Selected Publications of Research Area A

[A:HTT] S. Herr, D. Tataru, and N. Tzvetkov. Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in H1(T3). Duke Math. J. to appear.

[A:KM] H. Koch and J. Marzuola. Small data scattering and soliton stability in H -1/6 for the quartic KdV equation. Analysis and PDE. to appear.

[A:LNR11] M. Lenz, S. F. Nemadjieu, and M. Rumpf. A convergent finite volume scheme for diffusion on evolving surfaces. SIAM J. Numer. Anal., 49(1):15–37, 2011.

[A:LLS11] P. Linnell, W. Lück, and R. Sauer. The limit of Fp-Betti numbers of a tower of finite covers with amenable fundamental groups. Proc. Amer. Math. Soc., 139(2):421–434, 2011.

[A:Erb10] M. Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat., 46(1):1–23, 2010.

[A:JR10] T. Jeffres and J. Rowlett. Conformal deformations of conic metrics to constant scalar curvature. Math. Res. Lett., 17(3):449–465, 2010.

[A:MS10] W. Müller and A. Strohmaier. Scattering at low energies on manifolds with cylindrical ends and stable systoles. Geom. Funct. Anal., 20(3):741–778, 2010.

[A:SW10] U. Semmelmann and G. Weingart. The Weitzenböck machine. Compos. Math., 146(2):507–540, 2010.

[A:BBLZ09] B. Booß-Bavnbek, M. Lesch, and C. Zhu. The Calderón projection: new definition and applications. J. Geom. Phys., 59(7):784–826, 2009.

[A:DLS09] C. De Lellis and L. Székelyhidi, Jr. The Euler equations as a differential inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009.

[A:HHK09] M. Hadac, S. Herr, and H. Koch. Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3):917–941, 2009.

[A:KT09] H. Koch and D. Tataru. Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Comm. Partial Differential Equations, 34(4-6):305–366, 2009.

[A:NNRW09] O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. Finite element methods on very large, dynamic tubular grid encoded implicit surfaces. SIAM J. Sci. Comput., 31(3):2258–2281, 2009.

[A:Ver09a] B. Vertman. Analytic torsion of a bounded generalized cone. Comm. Math. Phys., 290(3):813–860, 2009.

[A:BBC08] W. Ballmann, J. Brüning, and G. Carron. Regularity and index theory for Dirac-Schrödinger systems with Lipschitz coefficients. J. Math. Pures Appl. (9), 89(5):429–476, 2008.

[A:MS07] W. Müller and G. Salomonsen. Scattering theory for the Laplacian on manifolds with bounded curvature. J. Funct. Anal., 253(1):158–206, 2007.

[A:Stu06a] K.-T. Sturm. On the geometry of metric measure spaces. I. Acta Math., 196(1):65–131, 2006.

[A:Stu06b] K.-T. Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–177, 2006.