Selected Publications of Research Area J

[J:Beb] M. Bebendorf. Adaptive cross approximation of multvariate functions. Constructive Approximation. DOI:10.1007/s00365-010-9103-x, to appear.

[J:Che] A. Chernov. Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex. Mathematics of Computation. DOI:10.1090/S0025-5718-2011-02513-5, to appear.

[J:RRT] H. Rauhut, J. Romberg, and J. Tropp. Restricted isometries for partial random circulant matrices. Appl. Comput. Harmonic Anal. DOI:10.1016/j.acha.2011.05.001, to appear.

[J:BM11] S. Bartels and R. Müller. Quasi-optimal and robust a posteriori error estimates in L¥(L2) for the approximation of Allen-Cahn equations past singularities. Mathematics of Computation, 80:761–780, 2011.

[J:BMO11] S. Bartels, R. Müller, and C. Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological
changes. SIAM J. Numer. Anal., 94:110–134, 2011.

[J:CH11] A. Chernov and P. Hansbo. An hp-Nitsche’s method for interface problems with nonconforming unstructured finite element meshes, volume 76 of Lecture Notes in Computational Science and Engineering, pages 153–162. Springer, 2011.

[J:CvPS11] A. Chernov, T. v. Petersdorf, and C. Schwab. Exponential convergence of hp quadrature for integral operators with Gevrey kernels. Mathematical Modelling and Numerical Analysis, 45(3):387–422, 2011.

[J:EM10a] A. Eberle and C. Marinelli. Lp estimates for Feynman-Kac propagators with timedependent reference measures. J. Math. Anal. Appl., 365(1):120–134, 2010.

[J:ES10] L. Erdös and B. Schlein. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensates. Ann. of Math, 1:291–370, 2010.

[J:GH10b] M. Griebel and M. Holtz. Dimension-wise integration of high-dimensional functions with applications to finance. J. Complexity, 26:455–489, 2010.

[J:BG09] J. Braun and M. Griebel. On a constructive proof of Kolmogorov’s superposition theorem. Constructive Approximation, 30–653, 2009.

[J:EXY09] L. Erdös, B. Schlein, and H.-T. Yau. Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc., 4:1099–1156, 2009.

[J:GL09] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for operator equations. Mathematics of Computations, 78(268):2223–2257, 2009.

[J:Ham09] J. Hamaekers. Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. PhD thesis, Institute for Numerical Simulation, University of Bonn, http://hss.ulb.uni-bonn.de/2009/1833/1833.pdf, 2009.

[J:Beb08] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering (LNCSE). Springer-Verlag, 2008.

[J:GH07] M. Griebel and J. Hamaekers. Sparse grids for the Schrödinger equation. Mathematical Modelling and Numerical Analysis, 41(2):215–247, 2007.

[J:GSS07] M. Griebel, K. Scherer, and M. A. Schweitzer. Robust norm equivalencies for diffusion problems. Mathematics of Computation, 76:1141–1161, 2007.

[J:GH06] M. Griebel and J. Hamaekers. A wavelet based sparse grid method for the electronic Schrödinger equation. In Proceedings of the International Congress of Mathematicians, volume III, pages 1473–1506, Madrid, Spain, 2006. European Mathematical Society.

[J:GW06] M. Griebel and H. Wozniakowski. On the optimal convergence rate of universal and non-universal algorithms for multivariate integration and approximation. Mathematics of Computation, 75(255):1259–1286, 2006.