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Powerful methods to compute
BPS spectra of 4d N = 2 theories:

‘Geometric’ Methods [Gaiotto, Moore, Neitzke]

‘Algebraic’ Methods (Algebra/Quiver Representation Theory)

M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1109.4941, 1112.3984

• The ‘Algebraic’ Method maps the computation of the BPS spectrum of a 4d N = 2
theory into a canonical problem in Representation Theory (RT)

• A lot of ‘classical’ RT facts are know (all with a direct physical interpretation) which
make the problem ‘easy’ for most N = 2 models

• Interesting structures emerge which shed light on both physics and math
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{BPS spectrum} −→


representations of a quiver Q,

satisfying Jacobian relations ∂W = 0,

stable w.r.t. the central charge Z


• Γ = ⊕vZev lattice of conserved charges (electric, magnetic, flavor)

• Buv = 〈eu, ev 〉Dirac ∈ Z, exchange matrix of a 2–acyclic quiver Q
(nodes v ↔ ev , u, v connected by Buv arrows u → v)
radical of B ≡ flavor charges

• a charge γ ∈ Γ+ ≡ ⊕vZ+ev (positive cone) ≡ dimension vector

• pair (Q,W) not unique; Seiber duality ≡ DWZ mutation classes

• central charge Z : Γ→ C linear with Z (Γ+) ⊂ H
• X ∈ rep(Q,W) is stable iff ∀ subobject Y , arg Z (Y ) < arg Z (X )

• X stable ⇒ X is a brick: EndX = C
• X belongs to a family of dimension d ⇒

(spin content of BPS supermultiplet) = (0, 12 )⊗ d

2
.
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One needs the (Q,W) class associated to the given N = 2 theory

• arXiv:1112.3984 G = ADE SQCD coupled to Nf fundamental hypers

Relatively easy: each hyper has a gauge invariant mass
mi →∞ decoupling limit, Nf → Nf − 1,

rep(QNf−1,WNf−1) ⊂ rep(QNf
,WNf

),

as a extension–closed, exact, full, controlled Abelian subcategory

Control function: fi : K0

(
rep(QNf

,WNf
)
)
→ Z: i–th flavor (dual to mi )

• if fi (Γ+) ≥ 0:

QNf−1 full subquiver of QNf

(2–acyclic; map is restriction)

• Recursively we get to pure G SYM known from Type IIB engineering

• Process may be inverted using Dirac charge quantization QNf−1 → QNf
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This strategy does not work for SYM coupled to HALF–hypermultiplets:
NO flavor symmetry, NO mass parameter

Tricky theories, on the verge of inconsistency:
most of them quantum inconsistent,
few consistent owe their existence to peculiar ‘miracles’

If G simple and the half–hyper is in the fundamental irrepr. just one
consistent example

G = E7 coupled to 1
2 56

Other consistent half–hyper models

G = SU(6) & 1
2 20

G = Spin(12) & 1
2 32

G = SU(2)× SO(2n) & 1
2 (2, 2n), n = 2, 3, 4

....

IIB engineering ⇒ consistent QFT’s & (Q,W) exists [CS, Neitzke, Vafa]

Their existence related to Representation Theoretical ‘miracles’
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• Before discussing the RT ‘miracles’ which make HALF–hypers
consistent, better to have a look to the ‘ordinary’ RT miracles i.e. the
special properties of the category rep(Q,W) corresponding to a QFT

Which categories rep(Q,W) correspond to consistent N = 2 QFT’s?

For models having a corner in parameter space with a weakly coupled
Lagrangian formulation1, the physically most convincing argument:
use (Q,W) to compute the would–be BPS spectrum in the chamber(s)
corresponding to the weak coupling corner; it should consists of two parts:

1 finitely many mutually–local states with bounded masses as gYM → 0

2 states not local relatively to those in 1 with masses O(1/g 2
YM) (‘dyons’)

The light states must consists of vector multiplets making one copy of the

adjoint of G plus finitely many hypers in definite (quaternionic) reps. Ra of G .

If this is true the pair (Q,W) corresponds to a theory which (in some

S–duality frame) is G SQCD with quarks in the {Ra} reprs.

1 Assumption NOT needed, just to simplify the presentation
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RT viewpoint gYM → 0 is a decoupling limit, as was m→∞

There is an exact closed full Abelian category

L (Q,W) ⊂ rep(Q,W)

controlled by the magnetic charges

m : K0

(
rep(Q,W)

)
→ Zr ' Γcoweights(G )

s.t. stable objects of L (Q,W) ≡ light BPS states as gYM → 0

Remarks & Properties

1 rep(Q,W) contains many ligh subcategories L , one for each weakly
coupled corner; e.g. SU(2) Nf = 4 a SL(2,Z) orbit of such subcategories;

2 m(Γ+) 6≥ 0 ⇒ the light category is NOT the restriction to a subquiver,
and its quiver is NOT necessarily 2–acyclic (as we shall see)

3 L (Q,W) is tame

4 universality of the SYM sector: for given gauge group G

L (QSYM,WSYM) ⊂ L (Q,W)

while finitely many bricks X ∈ L (Q,W) and X 6∈ L (QSYM,WSYM)
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As a warm–up, let us consider
three classes of simple examples

Example 1: SU(2) SQCD Nf ≤ 4

• Full Abelian category (up to Seiberg equivalence) Coh(P1
Nf

)

(P1
Nf
≡ P1 with Nf ‘double points’)

• Two quantum numbers, degree and rank

rank = magnetic charge, degree = electric charge

• light category L = sheaves of finite length (‘skyskrapers’)

• dyons = line bundles of various degree
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Example 2: pure SYM with G = ADE

• Quiver exchange matrix fixed by Dirac charge quantization

B = C ⊗ S ,

{
C Cartan matrix of G ,

S modular S–matrix

Ex : G = SU(6)

α
(1)
1

����

α
(2)
2

oo // α
(1)
3

����

α
(2)
4

oo // α
(1)
5

����

α
(2)
1

// α
(1)
2

OO OO

α
(2)
3

oo // α
(1)
4

OO OO

α
(2)
5

oo

• Consistency of Higgs G → SU(2)i × U(1)r−1 at weak coupling

X ∈ L YM(G ) ⇒ X
∣∣
�i
∈ L YM(SU(2))

true mathematical theorem for the corresponding Abelian categories !!

⇒ X ∈ L YM(G ) ⇒ in each pair of � we set one arrow to 1
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=⇒ L YM(G ) = rep(Q ′,W ′)

Q ′ double of the G Dynkin graph with loops Φv at the nodes
(the ‘N = 2 quiver’)

W ′ =
∑

a: arrows∈G

tr
(
ψ̃aΦt(a)ψa − ψaΦh(a)ψ̃a

)
Ex : G = SU(6)

α1A1 77

ψ̃1

66 α2

ψ1

vv

A2

EE

ψ̃2

66 α3

ψ2

vv

A3

EE

ψ̃3

66 α4

ψ3

vv

A4

EE

ψ̃4

66 α5

ψ4

vv
A5gg

` : (Xα1 ,Xα2 , · · · ,Xαr ) 7→ (A1Xα1 ,A2Xα2 , · · · ,ArXαr )

` ∈ EndX hence X a brick ⇒ Ai = λ ∈ C ∀ i (in facts, λ ∈ P1)
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Fixing λ ∈ P1, X representation of the double G of the Dynkin graph

Ex : A5
α1

ψ̃1

66 α2

ψ1

vv

ψ̃2

66 α3

ψ2

vv

ψ̃3

66 α4

ψ3

vv

ψ̃4

66 α5

ψ4

vv

with relations ∑
t(a)=v

ψaψ̃a −
∑

h(a)=v

ψ̃aψa = 0

the Gelfand–Ponomarev preprojective algebra of the graph G , P(G )

[Gelfand & Ponomarev] L a graph
dimP(L) <∞ if and only if L is a Dynkin graph

[Crawley–Boevey] CL = 2− IL Cartan matrix of the graph L,
X ∈ modP(L) then

2 dimEndX = (dim X )tCL(dim X ) + dimExt1(X ,X )

[Lusztig] X indecomposable, dimM(X ) = 1
2

dimExt1(X ,X )
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⇒ X a brick of P(G ), dim X is a positive root of G and rigid

⇒ X a brick of L YM(G ), dim X is a positive root of G and
M(X ) = P1

⇒ the BPS states which are stable and have bounded mass as
gYM → 0 are vector–multiplets in the adjoint of G

• a more detailed analysis shows that there is precisely one copy in
ANY weakly coupled chamber

• in particular, this shows that the CNV identification of (Q,W) is
correct
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Example 3: G = ADE SQCD with Ni full hypers in the
representation Fi = [0, · · · , 0, 1, 0, · · · , 0] (i = 1, 2, . . . , r)

M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984

One replaces the i–th subquiver � of the pure G SYM quiver as

•

Bi

��

Ai

��
•

−→

•

Bi

��

Ai

��

•
φ1

ggNNNNNNNNNNNNN
· · · •

φNi

kkWWWWWWWWWWWWWWWWWWWWWWWWWWW

•

φ̃1

77ppppppppppppp φ̃Ni

33ggggggggggggggggggggggggggg

W −→WSYM +

Ni∑
a=1

tr
[
(αa Ai − βa Bi )φa φ̃a

]
,

(αa, βa) ≡ λa ∈ P1 pairwise distinct

dim ker B = Ni : flavor charges (corresponding to the added nodes)
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The light category L = rep(Q ′,W ′) where

• Q ′ is the double of the graph G [i ,Ni ] obtained by adding Ni extra
nodes to the Dynkin graph G connected with a single hedge to the i–th
node of G with loops only at all ‘old’ nodes of G

• W ′ =W ′SYM +
∑

a tr
[
(αa Ai − βa)φa φ̃a

]
Ex : G = SU(6) with N3 = 1 (one hyper h in the 20)

h
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��
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X a brick⇒ Ai = λ ∈ P1,

• λ generic (i.e. λ 6= λa, a = 1, 2, . . . ,Ni ) Higgs fields φa, φ̃a massive →
integrate out
⇒ X is a brick of P(G )⇒ its charge vector is a positive root of G
⇒ W –bosons in the adjoint

• λ = λa, then X is a brick of the preprojective algebra P(G [i , 1]). Right
properties (finitely many, rigid, in right reprs. of G ) if and only if G [i , 1]
is also a Dynkin graph. Then

Theorem (1) Consider N = 2 SYM with simple simply–laced gauge
group G coupled to a hyper in a representation of the form
Fi = [0, · · · , 0, 1, 0, · · · , 0]. The resulting QFT is Asymptotically Free if
and only if the augmented graph obtained by adding to the Dynkin graph
of G an extra node connected by a single edge to the i–th node of G is
also an ADE Dynkin graph
(2) The model has a Type IIB engineering iff, in addition, the extra node

is an extension node in the extended augmented Dynkin graph Ĝ [i , 1].
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SU(N) with N • • • · · · • 0

SU(N) with N(N− 1)/2

• • • · · · • •

0

SU(6) with 20

• • • • •

0

SU(7) with 35

• • • • • •

0

SU(8) with 56

• • • • • • •

0
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SO(2n) with 2n

0 • • · · · • •

•

SO(10) with 16

0 • • • •

•

SO(12) with 32

0 • • • • •

•

SO(14) with 64

0 • • • • • •

•
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E6 with 27

• • • • • 0

•

E7 with 56

• • • • • • 0

•

• matter in the right representation of G since

i extension node in Ĝ [i , 1] =⇒
Ad(G [i , 1]) = Ad(G )⊕[0, · · · , 0, 1, 0, · · · , 0]⊕[0, · · · , 0, 1, 0, · · · , 0]⊕singlets

end of warm–up
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HALF–HYPERS

use yet another decoupling limit: extreme Higgs

• consider a N = 2 gauge theory with group Gr of rank r
• take a v.e.v. of the adjoint field 〈Φ〉 ∈ h(G ) s.t.

αa(〈Φ〉) =

{
t e iφ, t → +∞ a = i

O(1) otherwise

• states with electric weight ρ s.t. ρ(〈Φ〉) = O(t) decouple and we
remain with a gauge theory with gauge group Gr−1 whose Dynkin
diagram is obtained by deleting the i–th node from that of G
(coupled to specific matter)

e.g. G7 = E7 & 1
2 56 choosing i = 1 −→ G6 = Spin(12) & 1

2 32

• ◦ ◦ ◦ ◦ ◦

◦
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• again, the decoupling limit should correspond to a controlled Abelian
subcategory of rep(QGr ,WGr )

• one can choose (QGr ,WGr ) in its mutation–class and the phase φ so
that λ(·) is non–negative in the positive–cone K0(rep(QG ,WG ))+

• QGr−1 is a full subquiver of QGr and WGr−1 is just the restriction of WGr

• the complementary subquiver is a Kronecker one

• quiver recursion of the form

• if we know the simpler quiver QGr−1 , to get QGr we need just the (red)
arrows connecting the Kronecker to QGr−1
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the red arrows are fixed by Dirac charge quantization

• by the recursion assumption, we know the representations Xαa

associated to all simple–root W –bosons of Gr

• under the maximal torus U(1)r ⊂ G they have charges

qa(Xαb
) = Cab, Cartan matrix

• then the magnetic charges must be

ma(X ) = (C−1)ab
〈

dim X , dim Xαb

〉
Dirac

• ma(X ) ∈ LΓroot for all X for a unique choice of red arrows

• QGr uniquely determined, WGr has some higher–order ambiguity
which should be fixed in a different way

N = 2 Gauge Theories, Half–Hypers, and Quivers



• taking a suitable sequence of such Higgs decouplings

Gr → Gr−1 → Gr−2 → · · · · · · → Gk

we end up with a complete N = 2 having G = SU(2)k

(they are essentially S–class theories of type A1)

• all complete N = 2 quivers are known by classification
(equivalently, by ideal triangulation of their Gaiotto surface)

• inverting the Higgs procedure, we get the pair (QGr ,WGr ) for the
theory of interest by ‘pulling back’ the pair (Qmax comp,Wmax comp)
of their maximal complete (i.e. A1) subsector

• for the model of interest the ‘pull back’ chain is in the next slide
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E7
1
2 56 SU(2)× SO(12) 1

2 (2, 12)

SO(12) 1
2 32

KS

SU(2)× SO(10) 1
2 (2, 10)

ii OO

SU(6) 1
2 20

KS

SU(2)× SO(8) 1
2 (2, 8)

em SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

OO

SU(2)× SU(4) 1
2 (2, 6)

KS 19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

SU(2)3 1
2 (2, 2, 2)

KS
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E7 coupled to 1
2 56 ?>=<89:;1
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>>>>>>>>>
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WE7 = H1H3H2 + h3h1h2 + AψV3ψ
′ + BψH2V2h2ψ

′ + φV1φ
′ + ψV3h3φ

′+

φH3V3ψ
′B + Ãψ̃V2ψ̃

′ + B̃ψ̃H1V1h1ψ̃
′ + φ̃V3φ̃

′ + ψ̃V2h2φ̃
′ + φ̃H2V2ψ̃

′B̃+

+ A0ψ
′
−1B−1ψ−1 − B0ψ

′
−1A−1ψ−1 + A−1ψ

′
−2B−2ψ−2 − B−1ψ

′
−2A−2ψ−2
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SU(6) coupled to 1
2 20 ?>=<89:;1
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• higher terms in WG fixed by requiring rep(QG ,WG ) to contain the
right light subcategory L = rep(Q ′G ,W ′G ) (at weak YM coupling, light
vectors in one copy of AdG plus light hypers in half the expected rep.)

e.g. E7 & 1
2 56 Q ′E7

1
h3

zz
H1

��

−2A−2
55

ψ′−2

55 −1

ψ−2

uu

A−1

EE

ψ′−1

77 0

ψ−1

vv
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EE
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88 3
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xx H3

::

h2 ,, 2
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ll h1

SS

ψ̃
��

0̃

Ã

XX

ψ̃′

XX

W ′E7 = H1H3H2 + h3h1h2 + ψ0(H2h2 + h3H3)ψ′0 + ψ̃(H1h1 + h2H2)ψ̃′+

+ A0ψ0ψ
′
0 + A0ψ

′
−1ψ−1−A−1ψ−1ψ

′
−1 + A−1ψ

′
−2ψ−2−A−2ψ−2ψ

′
−2 + Ãψ̃ψ̃′.
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comparison of G & R vs. G & 1
2 R (e.g. E7 & 56 vs. E7 & 1

2 56)
shows the kind of RT ‘miracles’ needed for consistency at weak coupling

• bricks of rep(QG ,WG ) should be labelled by λ ∈ P1

• for λ 6= 0 isomorphic to those of P(G ) (universality of the SYM sector)
technically

L =
∨
λ∈P1

Lλ, Lλ ' L SYM(G )λ, for λ 6= 0

• for λ = 0 ‘half’ the bricks of P(G [i , 1]) (matter in the 1
2 R)

technically

modP(G [i , 1])
projection−−−−−−−→ Lλ=0

−→ superficially impossible: the quiver Q ′G has one less node than
G [i , 1], dimension vectors different rank; superficially G [i , 1] 6⊂ Q ′G

−→ consistency requires a RT ‘miracle’ G [i , 1] ⊂ Q ′G
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‘miracle’ pull–back of a ‘miracle’ already in the complete subsector
• all quivers of the light subcategory L for G & 1

2 R models contain

T2 :

•
h3

zz
H1

��

• H3

::

h2 -- •

H2

mm h1

TT

−→

• •

• •

which corresponds to the Gaiotto A1 theory on S2 with three punctures
M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984

• T2 is 4 free hypers so the disconnected quiver on 4 nodes on the right

• this ‘T2 duality’ produces the extra node we need at λ = 0

• ‘T2 duality’ plus some very special properties of Dynkin graphs G and

G [i , 1] imply that — for our choice of WG — the pair (QG ,WG ) has the

right BPS spectrum (and physics) at weak coupling
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STRONG COUPLING

having determined the mutation class of (QG ,WG ), we may study the
non–perturbative physics in any regime, in particular at Strong Coupling

natural question:
‘Given a G & 1

2 R model find its finite BPS chambers (if any)’

By the ‘mutation algorithm’ [M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa,

arXiv:1112.3984] this is a purely combinatoric problem for QG

At the moment answers for G = SU(2)× SO(2n) coupled to 1
2 (2, 2n)

• they all have finite chambers
e.g. SU(2)× SO(6) & 1

2 (2, 6) chambers with 21 and 27 hypers

SU(2)× SO(8) & 1
2 (2, 8) chamber with 48 hypers

however based on combinatorial identities different in nature with respect

to the ones for the full–hyper case: in that case they are ‘classical’

identities, whereas in the half–hyper we have new ‘miracolous’ identities
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CONCLUSIONS

the ‘algebraic’ approach to the 4d N = 2 BPS spectra is an
effective computational tool

it gives explicit answers even for the trickiest theories as the
half–hyper ones

modulo some (non trivial) technicalities, once one has
understood the A1 theories, all other (quiver) N = 2 models
are also understood

the dictionary N = 2 QFT ←→ RT transforms well–known
facts in physics into deep RT theorems, most of which
unknown to the math literature. In Greg Moore’s terminology,
it is more ‘Physical Mathematics’ than ‘Mathematical Physics’
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