$\mathcal{N}=2$ Gauge Theories, Half–Hypers, and Quivers # String-Math Bonn, July 2012 - S.C., arXiv:1203.6734. - S.C., & M. Del Zotto, arXiv:1207.2275. # Powerful methods to compute BPS spectra of 4d $\mathcal{N}=2$ theories: - 'Geometric' Methods [Gaiotto, Moore, Neitzke] - 'Algebraic' Methods (Algebra/Quiver Representation Theory) ``` M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1109.4941, 1112.3984 ``` - \bullet The 'Algebraic' Method maps the computation of the BPS spectrum of a 4d ${\cal N}=2$ theory into a canonical problem in Representation Theory (RT) - \bullet A lot of 'classical' RT facts are know (all with a direct physical interpretation) which make the problem 'easy' for most ${\cal N}=2$ models - Interesting structures emerge which shed light on both physics and math ``` \left\{ \text{BPS spectrum} \right\} \longrightarrow \left\{ \begin{aligned} &\text{representations of a quiver } Q, \\ &\text{satisfying Jacobian relations } \partial \mathcal{W} = 0, \\ &\text{stable w.r.t. the central charge } Z \end{aligned} \right\} ``` - $\Gamma = \bigoplus_{v} \mathbb{Z} e_{v}$ lattice of conserved charges (electric, magnetic, flavor) - $B_{uv} = \langle e_u, e_v \rangle_{\mathsf{Dirac}} \in \mathbb{Z}$, exchange matrix of a 2-acyclic quiver Q (nodes $v \leftrightarrow e_v$, u, v connected by B_{uv} arrows $u \to v$) radical of $B \equiv \mathsf{flavor}$ charges - a charge $\gamma \in \Gamma_+ \equiv \oplus_{\nu} \mathbb{Z}_+ e_{\nu}$ (positive cone) \equiv dimension vector - pair (Q, W) not unique; Seiber duality \equiv DWZ mutation classes - central charge $Z \colon \Gamma \to \mathbb{C}$ linear with $Z(\Gamma_+) \subset \mathbb{H}$ - $X \in \operatorname{rep}(Q, \mathcal{W})$ is **stable** iff \forall subobject Y, $\operatorname{arg} Z(Y) < \operatorname{arg} Z(X)$ - X stable \Rightarrow X is a brick: End $X = \mathbb{C}$ - X belongs to a family of dimension $d \Rightarrow$ (spin content of BPS supermultiplet) = $$(0, \frac{1}{2}) \otimes \frac{d}{2}$$. # One needs the (Q, W) class associated to the given $\mathcal{N} = 2$ theory • arXiv:1112.3984 G = ADE SQCD coupled to N_f fundamental hypers Relatively easy: each hyper has a gauge invariant mass $m_i \to \infty$ decoupling limit, $N_f \to N_f - 1$, $$\operatorname{\mathsf{rep}}(Q_{N_f-1},\mathcal{W}_{N_f-1}) \subset \operatorname{\mathsf{rep}}(Q_{N_f},\mathcal{W}_{N_f}),$$ as a extension-closed, exact, full, controlled Abelian subcategory $\underline{\mathsf{Control\ function:}}\ f_i\colon K_0\big(\mathsf{rep}(Q_{N_f},\mathcal{W}_{N_f})\big)\to\mathbb{Z}\colon i\text{--th\ flavor\ (dual\ to\ }m_i)$ • if $f_i(\Gamma_+) \geq 0$: Q_{N_f-1} full subquiver of Q_{N_f} (2-acyclic; map is restriction) - Recursively we get to pure G SYM known from Type IIB engineering - Process may be inverted using Dirac charge quantization $Q_{N_{\epsilon}-1} o Q_{N_{\epsilon}}$ This strategy does not work for SYM coupled to **HALF**–hypermultiplets: **NO** flavor symmetry, **NO** mass parameter Tricky theories, **on the verge of inconsistency**: most of them quantum inconsistent, few consistent owe their existence to peculiar 'min few consistent owe their existence to peculiar 'miracles' If G simple and the half-hyper is in the fundamental irrepr. just one consistent example $$G = E_7$$ coupled to $\frac{1}{2}$ **56** Other consistent half-hyper models - $G = SU(6) \& \frac{1}{2}$ **20** - $G = \text{Spin}(12) \& \frac{1}{2}$ **32** - $G = SU(2) \times SO(2n) \& \frac{1}{2}(\mathbf{2}, \mathbf{2n}), n = 2, 3, 4$ - IIB engineering \Rightarrow consistent QFT's & (Q, W) exists [CS, Neitzke, Vafa] Their existence related to Representation Theoretical 'miracles' • Before discussing the RT 'miracles' which make HALF–hypers consistent, better to have a look to the 'ordinary' RT miracles *i.e.* the special properties of the category $\operatorname{rep}(Q,\mathcal{W})$ corresponding to a QFT # Which categories rep(Q, W) correspond to consistent $\mathcal{N}=2$ QFT's? For models having a corner in parameter space with a weakly coupled Lagrangian formulation 1 , the physically most convincing argument: use (Q, \mathcal{W}) to compute the would–be BPS spectrum in the chamber(s) corresponding to the weak coupling corner; it should consists of two parts: - lacktriangledown finitely many mutually–local states with bounded masses as $g_{ m YM} ightarrow 0$ - ② states not local relatively to those in 1 with masses $O(1/g_{ m YM}^2)$ ('dyons') The light states must consists of vector multiplets making *one* copy of the adjoint of G plus *finitely many* hypers in definite (quaternionic) reps. R_a of G. If this is true the pair (Q, W) corresponds to a theory which (in some S-duality frame) is G SQCD with quarks in the $\{R_a\}$ reprs. $^{^1}$ Assumption NOT needed, just to simplify the presentation $\stackrel{>}{\longleftarrow} \stackrel{>}{\longleftarrow} \stackrel{>}{\longleftarrow} \stackrel{>}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow$ **RT viewpoint** $$g_{\text{YM}} \rightarrow 0$$ is a decoupling limit, as was $m \rightarrow \infty$ There is an exact closed full Abelian category $$\mathscr{L}(Q,\mathcal{W})\subset \operatorname{\mathsf{rep}}(Q,\mathcal{W})$$ controlled by the magnetic charges $$m: K_0(\operatorname{rep}(Q, \mathcal{W})) \to \mathbb{Z}^r \simeq \Gamma_{\operatorname{coweights}}(G)$$ s.t. stable objects of $\mathscr{L}(Q,\mathcal{W}) \equiv \text{light BPS}$ states as $g_{\text{YM}} \to 0$ #### Remarks & Properties - **1** $\operatorname{rep}(Q, W)$ contains many ligh subcategories \mathcal{L} , one for each weakly coupled corner; e.g. SU(2) $N_f = 4$ a $SL(2,\mathbb{Z})$ orbit of such subcategories; - $(\Gamma_+) \geqslant 0 \Rightarrow$ the light category is NOT the restriction to a subquiver, and its quiver is NOT necessarily 2-acyclic (as we shall see) - $\mathcal{L}(Q, \mathcal{W})$ is tame - universality of the SYM sector: for given gauge group G $$\mathscr{L}(Q_{\mathrm{SYM}}, \mathcal{W}_{\mathrm{SYM}}) \subset \mathscr{L}(Q, \mathcal{W})$$ while finitely many bricks $X \in \mathcal{L}(Q, \mathcal{W})$ and $X \notin \mathcal{L}(Q_{\text{SYM}}, \mathcal{W}_{\text{SYM}})$ # As a warm-up, let us consider three classes of simple examples # **Example 1**: SU(2) SQCD $N_f \le 4$ - Full Abelian category (up to Seiberg equivalence) $\operatorname{Coh}(\mathbb{P}^1_{N_f})$ ($\mathbb{P}^1_{N_f} \equiv \mathbb{P}^1$ with N_f 'double points') - Two quantum numbers, degree and rank ``` rank = magnetic charge, degree = electric charge ``` - light category $\mathscr{L} =$ sheaves of finite length ('skyskrapers') - dyons = line bundles of various degree # **Example 2**: pure SYM with G = ADE • Quiver exchange matrix fixed by Dirac charge quantization $$B = C \otimes S,$$ $$\begin{cases} C \text{ Cartan matrix of } G, \\ S \text{ modular } S\text{-matrix} \end{cases}$$ • Consistency of Higgs $G \to SU(2)_i \times U(1)^{r-1}$ at weak coupling $$X \in \mathcal{L}^{\mathrm{YM}}(G) \Rightarrow X|_{\uparrow \uparrow_i} \in \mathcal{L}^{\mathrm{YM}}(SU(2))$$ true mathematical theorem for the corresponding Abelian categories!! $$\Rightarrow$$ $X \in \mathscr{L}^{\mathrm{YM}}(G) \Rightarrow$ in each pair of $\uparrow \uparrow$ we set one arrow to 1 $$\implies \mathscr{L}^{\mathrm{YM}}(G) = \operatorname{rep}(Q', \mathcal{W}')$$ Q' double of the G Dynkin graph with loops Φ_{ν} at the nodes (the ' $\mathcal{N}=2$ quiver') $$\mathcal{W}' = \sum_{a: \text{ arrows} \in G} \operatorname{tr} (\widetilde{\psi}_{a} \Phi_{t(a)} \psi_{a} - \psi_{a} \Phi_{h(a)} \widetilde{\psi}_{a})$$ Ex: G = SU(6) $$A_{1} \bigcirc \alpha_{1} \bigvee_{\widetilde{\psi}_{1}}^{\psi_{1}} \alpha_{2} \bigvee_{\widetilde{\psi}_{2}}^{\psi_{2}} \alpha_{3} \bigvee_{\widetilde{\psi}_{3}}^{\psi_{3}} \alpha_{4} \bigvee_{\widetilde{\psi}_{4}}^{\psi_{4}} \alpha_{5} \bigcirc A_{5}$$ $$\ell : (X_{\alpha_1}, X_{\alpha_2}, \cdots, X_{\alpha_r}) \mapsto (A_1 X_{\alpha_1}, A_2 X_{\alpha_2}, \cdots, A_r X_{\alpha_r})$$ $\ell\in\operatorname{End}X$ hence X a brick $\Rightarrow A_i=\lambda\in\mathbb{C}\ orall\,i$ (in facts, $\lambda\in\mathbb{P}^1$) Fixing $\lambda \in \mathbb{P}^1$, X representation of the double \overline{G} of the Dynkin graph Ex: $$\overline{A_5}$$ $\alpha_1 \underbrace{\psi_1}_{\widetilde{\psi}_1} \alpha_2 \underbrace{\psi_2}_{\widetilde{\psi}_2} \alpha_3 \underbrace{\psi_3}_{\widetilde{\psi}_3} \alpha_4 \underbrace{\psi_4}_{\widetilde{\psi}_4} \alpha_5$ with relations $$\sum_{t(a)=v} \psi_a \widetilde{\psi}_a - \sum_{h(a)=v} \widetilde{\psi}_a \psi_a = 0$$ the Gelfand-Ponomarev **preprojective algebra** of the graph G, $\mathcal{P}(G)$ - [Gelfand & Ponomarev] L a graph dim $\mathcal{P}(L) < \infty$ if and only if L is a Dynkin graph - [Crawley–Boevey] $C_L = 2 I_L$ Cartan matrix of the graph L, $X \in \operatorname{mod} \mathcal{P}(L)$ then $$2 \dim \operatorname{End} X = (\dim X)^{t} C_{L}(\dim X) + \dim \operatorname{Ext}^{1}(X, X)$$ • [Lusztig] X indecomposable, dim $\mathcal{M}(X) = \frac{1}{2}\dim \operatorname{Ext}^1(X,X)$ - \Rightarrow X a brick of $\mathcal{P}(G)$, dim X is a positive root of G and rigid - \Rightarrow X a brick of $\mathscr{L}^{\mathrm{YM}}(G)$, dim X is a positive root of G and $\mathcal{M}(X)=\mathbb{P}^1$ - \Rightarrow the BPS states which are stable and have bounded mass as $g_{\rm YM} \to 0$ are vector–multiplets in the adjoint of G - a more detailed analysis shows that there is precisely one copy in ANY weakly coupled chamber - ullet in particular, this shows that the CNV identification of (Q,\mathcal{W}) is correct **Example 3**: G = ADE SQCD with N_i full hypers in the representation $F_i = [0, \dots, 0, 1, 0, \dots, 0]$ $(i = 1, 2, \dots, r)$ M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984 One replaces the i-th subquiver $\downarrow \downarrow$ of the pure G SYM quiver as $$\mathcal{W} \longrightarrow \mathcal{W}_{\text{SYM}} + \sum_{a=1}^{N_i} \text{tr} \big[(\alpha_a A_i - \beta_a B_i) \phi_a \widetilde{\phi}_a \big],$$ $$(\alpha_a, \beta_a) \equiv \lambda_a \in \mathbb{P}^1 \text{ pairwise distinct}$$ dim ker $B = N_i$: flavor charges (corresponding to the added nodes) The light category $\mathscr{L} = \operatorname{rep}(Q', \mathcal{W}')$ where • Q' is the double of the graph $G[i,N_i]$ obtained by adding N_i extra nodes to the Dynkin graph G connected with a single hedge to the i-th node of G with loops only at all 'old' nodes of G • $$W' = W'_{SYM} + \sum_{a} tr[(\alpha_a A_i - \beta_a)\phi_a \widetilde{\phi}_a]$$ Ex: G = SU(6) with $N_3 = 1$ (one hyper h in the **20**) X a brick $\Rightarrow A_i = \lambda \in \mathbb{P}^1$, - λ generic (i.e. $\lambda \neq \lambda_a$, $a=1,2,\ldots,N_i$) Higgs fields $\phi_a,\widetilde{\phi}_a$ massive \rightarrow integrate out - \Rightarrow X is a brick of $\mathcal{P}(G)$ \Rightarrow its charge vector is a positive root of G \Rightarrow W-bosons in the adjoint - $\lambda = \lambda_a$, then X is a brick of the preprojective algebra $\mathcal{P}(G[i,1])$. Right properties (finitely many, rigid, in right reprs. of G) if and only if G[i,1] is also a Dynkin graph. Then **Theorem** (1) Consider $\mathcal{N}=2$ SYM with simple simply–laced gauge group G coupled to a hyper in a representation of the form $F_i=[0,\cdots,0,1,0,\cdots,0]$. The resulting QFT is Asymptotically Free if and only if the augmented graph obtained by adding to the Dynkin graph of G an extra node connected by a single edge to the i-th node of G is also an ADE Dynkin graph (2) The model has a Type IIB engineering iff, in addition, the extra node is an extension node in the extended augmented Dynkin graph $\widehat{G[i,1]}$. • matter in the right representation of G since $$i$$ extension node in $\widehat{G[i,1]} \implies$ $\operatorname{Ad}(G[i,1]) = \operatorname{Ad}(G) \oplus [0, \cdots, 0, 1, 0, \cdots, 0] \oplus \overline{[0, \cdots, 0, 1, 0, \cdots, 0]} \oplus \operatorname{singlets}$ end of warm-up #### **HALF-HYPERS** use yet another decoupling limit: extreme Higgs - consider a $\mathcal{N}=2$ gauge theory with group G_r of rank r - take a v.e.v. of the adjoint field $\langle \Phi \rangle \in \mathfrak{h}(G)$ s.t. $$lpha_{\it a}(\langle \Phi angle) = egin{cases} t \ e^{i\phi}, & t ightarrow +\infty & \it a = i \ O(1) & ext{otherwise} \end{cases}$$ • states with electric weight ρ s.t. $\rho(\langle \Phi \rangle) = O(t)$ decouple and we remain with a gauge theory with gauge group G_{r-1} whose Dynkin diagram is obtained by deleting the i-th node from that of G (coupled to specific matter) e.g. $$G_7=E_7$$ & $\frac{1}{2}$ **56** choosing $i=1$ \longrightarrow $G_6=\mathrm{Spin}(12)$ & $\frac{1}{2}$ **32** $$\bullet \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ$$ - again, the decoupling limit should correspond to a controlled Abelian subcategory of $\operatorname{rep}(Q_{G_r}, \mathcal{W}_{G_r})$ - one can choose $(Q_{G_r}, \mathcal{W}_{G_r})$ in its mutation–class and the phase ϕ so that $\lambda(\cdot)$ is *non–negative* in the positive–cone $K_0(\operatorname{rep}(Q_G, \mathcal{W}_G))_+$ - $Q_{G_{r-1}}$ is a full subquiver of Q_{G_r} and $\mathcal{W}_{G_{r-1}}$ is just the restriction of \mathcal{W}_{G_r} - the complementary subquiver is a Kronecker one - quiver recursion of the form • if we know the simpler quiver $Q_{G_{r-1}}$, to get Q_{G_r} we need just the (red) arrows connecting the Kronecker to $Q_{G_{r-1}}$ the red arrows are fixed by Dirac charge quantization - by the recursion assumption, we know the representations X_{α_s} associated to all simple–root W–bosons of G_r - under the maximal torus $U(1)^r \subset G$ they have charges $$q_a(X_{\alpha_b}) = C_{ab},$$ Cartan matrix then the magnetic charges must be $$m_{\mathsf{a}}(X) = (C^{-1})_{\mathsf{a}\mathsf{b}} \left\langle \operatorname{\mathsf{dim}} X, \operatorname{\mathsf{dim}} X_{\alpha_{\mathsf{b}}} \right\rangle_{\mathsf{Dirac}}$$ - $m_a(X) \in {}^L\Gamma_{\text{root}}$ for all X for a *unique* choice of red arrows - Q_{G_r} uniquely determined, W_{G_r} has some higher-order ambiguity which should be fixed in a different way taking a suitable sequence of such Higgs decouplings $$G_r \to G_{r-1} \to G_{r-2} \to \cdots \to G_k$$ we end up with a complete $\mathcal{N}=2$ having $G=SU(2)^k$ (they are essentially S-class theories of type A_1) - all complete $\mathcal{N}=2$ quivers are *known* by classification (equivalently, by ideal triangulation of their Gaiotto surface) - inverting the Higgs procedure, we get the pair $(Q_{G_r}, \mathcal{W}_{G_r})$ for the theory of interest by 'pulling back' the pair $(Q_{\text{max comp}}, \mathcal{W}_{\text{max comp}})$ of their **maximal complete** (i.e. A_1) **subsector** - for the model of interest the 'pull back' chain is in the next slide $$\begin{split} \mathcal{W}_{E_7} &= H_1 H_3 H_2 + h_3 h_1 h_2 + A \psi V_3 \psi' + B \psi H_2 V_2 h_2 \psi' + \phi V_1 \phi' + \psi V_3 h_3 \phi' + \\ \phi H_3 V_3 \psi' B + \widetilde{A} \widetilde{\psi} V_2 \widetilde{\psi}' + \widetilde{B} \widetilde{\psi} H_1 V_1 h_1 \widetilde{\psi}' + \widetilde{\phi} V_3 \widetilde{\phi}' + \widetilde{\psi} V_2 h_2 \widetilde{\phi}' + \widetilde{\phi} H_2 V_2 \widetilde{\psi}' \widetilde{B} + \\ &+ A_0 \psi'_{-1} B_{-1} \psi_{-1} - B_0 \psi'_{-1} A_{-1} \psi_{-1} + A_{-1} \psi'_{-2} B_{-2} \psi_{-2} - B_{-1} \psi'_{-2} A_{-2} \psi_{-2} \end{split}$$ # SU(6) coupled to $\frac{1}{2}$ **20** $$\mathcal{W}_{SU(6)} = H_1 H_3 H_2 + h_3 h_1 h_2 + A \psi V_3 \psi' + B \psi H_2 V_2 h_2 \psi' + \phi V_1 \phi' + \psi V_3 h_3 \phi' + \phi H_3 V_3 \psi' B + \widetilde{A} \widetilde{\psi} V_2 \widetilde{\psi}' + \widetilde{B} \widetilde{\psi} H_1 V_1 h_1 \widetilde{\psi}' + \widetilde{\phi} V_3 \widetilde{\phi}' + \widetilde{\psi} V_2 h_2 \widetilde{\phi}' + \widetilde{\phi} H_2 V_2 \widetilde{\psi}' \widetilde{B}$$ • higher terms in \mathcal{W}_G fixed by requiring $\operatorname{rep}(Q_G,\mathcal{W}_G)$ to contain the right light subcategory $\mathscr{L}=\operatorname{rep}(Q_G',\mathcal{W}_G')$ (at weak YM coupling, light vectors in one copy of $\operatorname{Ad} G$ plus light hypers in half the expected rep.) e.g. $$E_7 \& \frac{1}{2} \mathbf{56}$$ Q'_{E_7} $$\mathcal{W}'_{E_7} = H_1 H_3 H_2 + h_3 h_1 h_2 + \psi_0 (H_2 h_2 + h_3 H_3) \psi'_0 + \widetilde{\psi} (H_1 h_1 + h_2 H_2) \widetilde{\psi}' + \widetilde{A} + A_0 \psi_0 \psi'_0 + A_0 \psi'_{-1} \psi_{-1} - A_{-1} \psi_{-1} \psi'_{-1} + A_{-1} \psi'_{-2} \psi_{-2} - A_{-2} \psi_{-2} \psi'_{-2} + \widetilde{A} \widetilde{\psi} \widetilde{\psi}'.$$ comparison of $G \& \mathbf{R}$ vs. $G \& \frac{1}{2} \mathbf{R}$ (e.g. $E_7 \& \mathbf{56}$ vs. $E_7 \& \frac{1}{2} \mathbf{56}$) shows the kind of RT 'miracles' needed for consistency at weak coupling - ullet bricks of $\operatorname{rep}(Q_G,\mathcal{W}_G)$ should be labelled by $\lambda\in\mathbb{P}^1$ - for $\lambda \neq 0$ isomorphic to those of $\mathcal{P}(G)$ (universality of the SYM sector) technically $$\mathscr{L} = \bigvee_{\lambda \in \mathbb{P}^1} \mathscr{L}_{\lambda}, \qquad \mathscr{L}_{\lambda} \simeq \mathscr{L}^{\mathrm{SYM}}(\mathit{G})_{\lambda}, \text{ for } \lambda \neq 0$$ • for $\lambda=0$ 'half' the bricks of $\mathcal{P}(G[i,1])$ (matter in the $\frac{1}{2}$ **R**) technically $$\operatorname{\mathsf{mod}} \mathcal{P}(G[i,1]) \xrightarrow{\operatorname{\mathsf{projection}}} \mathscr{L}_{\lambda=0}$$ - \longrightarrow superficially impossible: the quiver Q'_G has one less node than G[i,1], dimension vectors different rank; superficially $G[i,1] \not\subset Q'_G$ - \longrightarrow consistency requires a RT 'miracle' $G[i,1] \subset Q'_G$ 'miracle' pull-back of a 'miracle' already in the complete subsector • all quivers of the light subcategory \mathscr{L} for $G \& \frac{1}{2} \mathbf{R}$ models contain which corresponds to the Gaiotto A_1 theory on S^2 with three punctures M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984 - T₂ is 4 free hypers so the disconnected quiver on 4 nodes on the right - this ' T_2 duality' produces the extra node we need at $\lambda = 0$ - ' T_2 duality' plus some very special properties of Dynkin graphs G and G[i,1] imply that for our choice of W_G the pair (Q_G, W_G) has the right BPS spectrum (and physics) at weak coupling ### STRONG COUPLING having determined the mutation class of (Q_G, \mathcal{W}_G) , we may study the non–perturbative physics in any regime, in particular at Strong Coupling ### natural question: 'Given a G & $\frac{1}{2}$ R model find its <u>finite</u> BPS chambers (if any)' By the 'mutation algorithm' [M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984] this is a purely combinatoric problem for Q_G At the moment answers for $G = SU(2) \times SO(2n)$ coupled to $\frac{1}{2}$ (2, 2n) - they all have finite chambers - e.g. $SU(2) \times SO(6)$ & $\frac{1}{2}(\mathbf{2}, \mathbf{6})$ chambers with 21 and 27 hypers $SU(2) \times SO(8)$ & $\frac{1}{2}(\mathbf{2}, \mathbf{8})$ chamber with 48 hypers however based on combinatorial identities different in nature with respect to the ones for the **full**-hyper case: in that case they are 'classical' identities, whereas in the **half**-hyper we have new 'miracolous' identities #### CONCLUSIONS - \bullet the 'algebraic' approach to the 4d $\mathcal{N}=2$ BPS spectra is an effective computational tool - it gives explicit answers even for the trickiest theories as the half-hyper ones - modulo some (non trivial) technicalities, once one has understood the A_1 theories, all other (quiver) $\mathcal{N}=2$ models are also understood - the dictionary $\mathcal{N}=2$ QFT \longleftrightarrow RT transforms well–known facts in physics into deep RT theorems, most of which unknown to the math literature. In Greg Moore's terminology, it is more 'Physical Mathematics' than 'Mathematical Physics'