# $\mathcal{N}=2$ Gauge Theories, Half–Hypers, and Quivers

# String-Math Bonn, July 2012

- S.C., arXiv:1203.6734.
- S.C., & M. Del Zotto, arXiv:1207.2275.

# Powerful methods to compute BPS spectra of 4d $\mathcal{N}=2$ theories:

- 'Geometric' Methods [Gaiotto, Moore, Neitzke]
- 'Algebraic' Methods (Algebra/Quiver Representation Theory)

```
M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1109.4941, 1112.3984
```

- $\bullet$  The 'Algebraic' Method maps the computation of the BPS spectrum of a 4d  ${\cal N}=2$  theory into a canonical problem in Representation Theory (RT)
- $\bullet$  A lot of 'classical' RT facts are know (all with a direct physical interpretation) which make the problem 'easy' for most  ${\cal N}=2$  models
- Interesting structures emerge which shed light on both physics and math

```
\left\{ \text{BPS spectrum} \right\} \longrightarrow \left\{ \begin{aligned} &\text{representations of a quiver } Q, \\ &\text{satisfying Jacobian relations } \partial \mathcal{W} = 0, \\ &\text{stable w.r.t. the central charge } Z \end{aligned} \right\}
```

- $\Gamma = \bigoplus_{v} \mathbb{Z} e_{v}$  lattice of conserved charges (electric, magnetic, flavor)
- $B_{uv} = \langle e_u, e_v \rangle_{\mathsf{Dirac}} \in \mathbb{Z}$ , exchange matrix of a 2-acyclic quiver Q (nodes  $v \leftrightarrow e_v$ , u, v connected by  $B_{uv}$  arrows  $u \to v$ ) radical of  $B \equiv \mathsf{flavor}$  charges
- a charge  $\gamma \in \Gamma_+ \equiv \oplus_{\nu} \mathbb{Z}_+ e_{\nu}$  (positive cone)  $\equiv$  dimension vector
- pair (Q, W) not unique; Seiber duality  $\equiv$  DWZ mutation classes
- central charge  $Z \colon \Gamma \to \mathbb{C}$  linear with  $Z(\Gamma_+) \subset \mathbb{H}$
- $X \in \operatorname{rep}(Q, \mathcal{W})$  is **stable** iff  $\forall$  subobject Y,  $\operatorname{arg} Z(Y) < \operatorname{arg} Z(X)$
- X stable  $\Rightarrow$  X is a brick: End  $X = \mathbb{C}$
- X belongs to a family of dimension  $d \Rightarrow$

(spin content of BPS supermultiplet) = 
$$(0, \frac{1}{2}) \otimes \frac{d}{2}$$
.

# One needs the (Q, W) class associated to the given $\mathcal{N} = 2$ theory

• arXiv:1112.3984 G = ADE SQCD coupled to  $N_f$  fundamental hypers

Relatively easy: each hyper has a gauge invariant mass  $m_i \to \infty$  decoupling limit,  $N_f \to N_f - 1$ ,

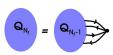
$$\operatorname{\mathsf{rep}}(Q_{N_f-1},\mathcal{W}_{N_f-1}) \subset \operatorname{\mathsf{rep}}(Q_{N_f},\mathcal{W}_{N_f}),$$

as a extension-closed, exact, full, controlled Abelian subcategory

 $\underline{\mathsf{Control\ function:}}\ f_i\colon K_0\big(\mathsf{rep}(Q_{N_f},\mathcal{W}_{N_f})\big)\to\mathbb{Z}\colon i\text{--th\ flavor\ (dual\ to\ }m_i)$ 

• if  $f_i(\Gamma_+) \geq 0$ :

 $Q_{N_f-1}$  full subquiver of  $Q_{N_f}$ (2-acyclic; map is restriction)



- Recursively we get to pure G SYM known from Type IIB engineering
- Process may be inverted using Dirac charge quantization  $Q_{N_{\epsilon}-1} o Q_{N_{\epsilon}}$

This strategy does not work for SYM coupled to **HALF**–hypermultiplets: **NO** flavor symmetry, **NO** mass parameter

Tricky theories, **on the verge of inconsistency**: most of them quantum inconsistent, few consistent owe their existence to peculiar 'min

few consistent owe their existence to peculiar 'miracles'

If G simple and the half-hyper is in the fundamental irrepr. just one consistent example

$$G = E_7$$
 coupled to  $\frac{1}{2}$  **56**

Other consistent half-hyper models

- $G = SU(6) \& \frac{1}{2}$  **20**
- $G = \text{Spin}(12) \& \frac{1}{2}$  **32**
- $G = SU(2) \times SO(2n) \& \frac{1}{2}(\mathbf{2}, \mathbf{2n}), n = 2, 3, 4$
- ....

IIB engineering  $\Rightarrow$  consistent QFT's & (Q, W) exists [CS, Neitzke, Vafa]

Their existence related to Representation Theoretical 'miracles'



• Before discussing the RT 'miracles' which make HALF–hypers consistent, better to have a look to the 'ordinary' RT miracles *i.e.* the special properties of the category  $\operatorname{rep}(Q,\mathcal{W})$  corresponding to a QFT

# Which categories rep(Q, W) correspond to consistent $\mathcal{N}=2$ QFT's?

For models having a corner in parameter space with a weakly coupled Lagrangian formulation  $^1$ , the physically most convincing argument: use  $(Q, \mathcal{W})$  to compute the would–be BPS spectrum in the chamber(s) corresponding to the weak coupling corner; it should consists of two parts:

- lacktriangledown finitely many mutually–local states with bounded masses as  $g_{
  m YM} 
  ightarrow 0$
- ② states not local relatively to those in 1 with masses  $O(1/g_{
  m YM}^2)$  ('dyons')

The light states must consists of vector multiplets making *one* copy of the adjoint of G plus *finitely many* hypers in definite (quaternionic) reps.  $R_a$  of G.

If this is true the pair (Q, W) corresponds to a theory which (in some S-duality frame) is G SQCD with quarks in the  $\{R_a\}$  reprs.

 $<sup>^1</sup>$  Assumption NOT needed, just to simplify the presentation  $\stackrel{>}{\longleftarrow} \stackrel{>}{\longleftarrow} \stackrel{>}{\longleftarrow} \stackrel{>}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow$ 

**RT viewpoint** 
$$g_{\text{YM}} \rightarrow 0$$
 is a decoupling limit, as was  $m \rightarrow \infty$ 

There is an exact closed full Abelian category

$$\mathscr{L}(Q,\mathcal{W})\subset \operatorname{\mathsf{rep}}(Q,\mathcal{W})$$

controlled by the magnetic charges

$$m: K_0(\operatorname{rep}(Q, \mathcal{W})) \to \mathbb{Z}^r \simeq \Gamma_{\operatorname{coweights}}(G)$$

s.t. stable objects of  $\mathscr{L}(Q,\mathcal{W}) \equiv \text{light BPS}$  states as  $g_{\text{YM}} \to 0$ 

#### Remarks & Properties

- **1**  $\operatorname{rep}(Q, W)$  contains many ligh subcategories  $\mathcal{L}$ , one for each weakly coupled corner; e.g. SU(2)  $N_f = 4$  a  $SL(2,\mathbb{Z})$  orbit of such subcategories;
- $( \Gamma_+) \geqslant 0 \Rightarrow$  the light category is NOT the restriction to a subquiver, and its quiver is NOT necessarily 2-acyclic (as we shall see)
- $\mathcal{L}(Q, \mathcal{W})$  is tame
- universality of the SYM sector: for given gauge group G

$$\mathscr{L}(Q_{\mathrm{SYM}}, \mathcal{W}_{\mathrm{SYM}}) \subset \mathscr{L}(Q, \mathcal{W})$$

while finitely many bricks  $X \in \mathcal{L}(Q, \mathcal{W})$  and  $X \notin \mathcal{L}(Q_{\text{SYM}}, \mathcal{W}_{\text{SYM}})$ 



# As a warm-up, let us consider three classes of simple examples

# **Example 1**: SU(2) SQCD $N_f \le 4$

- Full Abelian category (up to Seiberg equivalence)  $\operatorname{Coh}(\mathbb{P}^1_{N_f})$  ( $\mathbb{P}^1_{N_f} \equiv \mathbb{P}^1$  with  $N_f$  'double points')
- Two quantum numbers, degree and rank

```
rank = magnetic charge, degree = electric charge
```

- light category  $\mathscr{L} =$  sheaves of finite length ('skyskrapers')
- dyons = line bundles of various degree

# **Example 2**: pure SYM with G = ADE

• Quiver exchange matrix fixed by Dirac charge quantization

$$B = C \otimes S,$$
 
$$\begin{cases} C \text{ Cartan matrix of } G, \\ S \text{ modular } S\text{-matrix} \end{cases}$$

• Consistency of Higgs  $G \to SU(2)_i \times U(1)^{r-1}$  at weak coupling

$$X \in \mathcal{L}^{\mathrm{YM}}(G) \Rightarrow X|_{\uparrow \uparrow_i} \in \mathcal{L}^{\mathrm{YM}}(SU(2))$$

true mathematical theorem for the corresponding Abelian categories!!

$$\Rightarrow$$
  $X \in \mathscr{L}^{\mathrm{YM}}(G) \Rightarrow$  in each pair of  $\uparrow \uparrow$  we set one arrow to  $1$ 

$$\implies \mathscr{L}^{\mathrm{YM}}(G) = \operatorname{rep}(Q', \mathcal{W}')$$

Q' double of the G Dynkin graph with loops  $\Phi_{\nu}$  at the nodes (the ' $\mathcal{N}=2$  quiver')

$$\mathcal{W}' = \sum_{a: \text{ arrows} \in G} \operatorname{tr} (\widetilde{\psi}_{a} \Phi_{t(a)} \psi_{a} - \psi_{a} \Phi_{h(a)} \widetilde{\psi}_{a})$$

Ex: G = SU(6)

$$A_{1} \bigcirc \alpha_{1} \bigvee_{\widetilde{\psi}_{1}}^{\psi_{1}} \alpha_{2} \bigvee_{\widetilde{\psi}_{2}}^{\psi_{2}} \alpha_{3} \bigvee_{\widetilde{\psi}_{3}}^{\psi_{3}} \alpha_{4} \bigvee_{\widetilde{\psi}_{4}}^{\psi_{4}} \alpha_{5} \bigcirc A_{5}$$

$$\ell : (X_{\alpha_1}, X_{\alpha_2}, \cdots, X_{\alpha_r}) \mapsto (A_1 X_{\alpha_1}, A_2 X_{\alpha_2}, \cdots, A_r X_{\alpha_r})$$

 $\ell\in\operatorname{End}X$  hence X a brick  $\Rightarrow A_i=\lambda\in\mathbb{C}\ orall\,i$  (in facts,  $\lambda\in\mathbb{P}^1$ )

Fixing  $\lambda \in \mathbb{P}^1$ , X representation of the double  $\overline{G}$  of the Dynkin graph

Ex: 
$$\overline{A_5}$$
  $\alpha_1 \underbrace{\psi_1}_{\widetilde{\psi}_1} \alpha_2 \underbrace{\psi_2}_{\widetilde{\psi}_2} \alpha_3 \underbrace{\psi_3}_{\widetilde{\psi}_3} \alpha_4 \underbrace{\psi_4}_{\widetilde{\psi}_4} \alpha_5$ 

with relations

$$\sum_{t(a)=v} \psi_a \widetilde{\psi}_a - \sum_{h(a)=v} \widetilde{\psi}_a \psi_a = 0$$

the Gelfand-Ponomarev **preprojective algebra** of the graph G,  $\mathcal{P}(G)$ 

- [Gelfand & Ponomarev] L a graph dim  $\mathcal{P}(L) < \infty$  if and only if L is a Dynkin graph
- [Crawley–Boevey]  $C_L = 2 I_L$  Cartan matrix of the graph L,  $X \in \operatorname{mod} \mathcal{P}(L)$  then

$$2 \dim \operatorname{End} X = (\dim X)^{t} C_{L}(\dim X) + \dim \operatorname{Ext}^{1}(X, X)$$

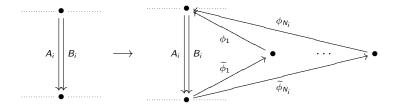
• [Lusztig] X indecomposable, dim  $\mathcal{M}(X) = \frac{1}{2}\dim \operatorname{Ext}^1(X,X)$ 

- $\Rightarrow$  X a brick of  $\mathcal{P}(G)$ , dim X is a positive root of G and rigid
- $\Rightarrow$  X a brick of  $\mathscr{L}^{\mathrm{YM}}(G)$ , dim X is a positive root of G and  $\mathcal{M}(X)=\mathbb{P}^1$
- $\Rightarrow$  the BPS states which are stable and have bounded mass as  $g_{\rm YM} \to 0$  are vector–multiplets in the adjoint of G
- a more detailed analysis shows that there is precisely one copy in ANY weakly coupled chamber
- ullet in particular, this shows that the CNV identification of  $(Q,\mathcal{W})$  is correct

**Example 3**: G = ADE SQCD with  $N_i$  full hypers in the representation  $F_i = [0, \dots, 0, 1, 0, \dots, 0]$   $(i = 1, 2, \dots, r)$ 

M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984

One replaces the i-th subquiver  $\downarrow \downarrow$  of the pure G SYM quiver as



$$\mathcal{W} \longrightarrow \mathcal{W}_{\text{SYM}} + \sum_{a=1}^{N_i} \text{tr} \big[ (\alpha_a A_i - \beta_a B_i) \phi_a \widetilde{\phi}_a \big],$$
$$(\alpha_a, \beta_a) \equiv \lambda_a \in \mathbb{P}^1 \text{ pairwise distinct}$$

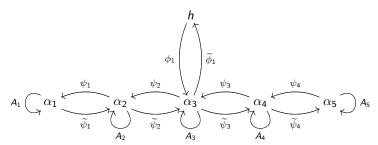
dim ker  $B = N_i$ : flavor charges (corresponding to the added nodes)

The light category  $\mathscr{L} = \operatorname{rep}(Q', \mathcal{W}')$  where

• Q' is the double of the graph  $G[i,N_i]$  obtained by adding  $N_i$  extra nodes to the Dynkin graph G connected with a single hedge to the i-th node of G with loops only at all 'old' nodes of G

• 
$$W' = W'_{SYM} + \sum_{a} tr[(\alpha_a A_i - \beta_a)\phi_a \widetilde{\phi}_a]$$

Ex: G = SU(6) with  $N_3 = 1$  (one hyper h in the **20**)

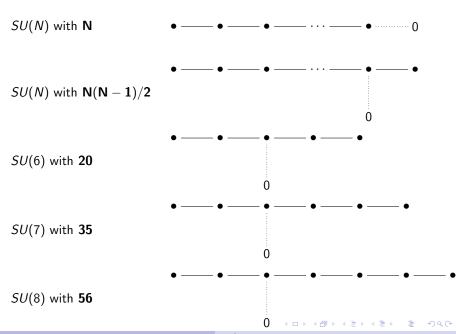


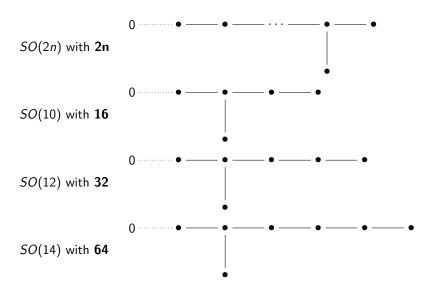
X a brick  $\Rightarrow A_i = \lambda \in \mathbb{P}^1$ ,

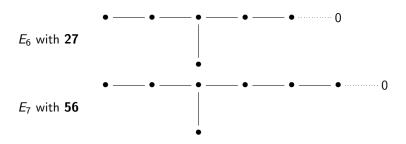
- $\lambda$  generic (i.e.  $\lambda \neq \lambda_a$ ,  $a=1,2,\ldots,N_i$ ) Higgs fields  $\phi_a,\widetilde{\phi}_a$  massive  $\rightarrow$  integrate out
- $\Rightarrow$  X is a brick of  $\mathcal{P}(G)$   $\Rightarrow$  its charge vector is a positive root of G  $\Rightarrow$  W-bosons in the adjoint
- $\lambda = \lambda_a$ , then X is a brick of the preprojective algebra  $\mathcal{P}(G[i,1])$ . Right properties (finitely many, rigid, in right reprs. of G) if and only if G[i,1] is also a Dynkin graph. Then

**Theorem** (1) Consider  $\mathcal{N}=2$  SYM with simple simply–laced gauge group G coupled to a hyper in a representation of the form  $F_i=[0,\cdots,0,1,0,\cdots,0]$ . The resulting QFT is Asymptotically Free if and only if the augmented graph obtained by adding to the Dynkin graph of G an extra node connected by a single edge to the i-th node of G is also an ADE Dynkin graph

(2) The model has a Type IIB engineering iff, in addition, the extra node is an extension node in the extended augmented Dynkin graph  $\widehat{G[i,1]}$ .







• matter in the right representation of G since

$$i$$
 extension node in  $\widehat{G[i,1]} \implies$   $\operatorname{Ad}(G[i,1]) = \operatorname{Ad}(G) \oplus [0, \cdots, 0, 1, 0, \cdots, 0] \oplus \overline{[0, \cdots, 0, 1, 0, \cdots, 0]} \oplus \operatorname{singlets}$ 

end of warm-up

#### **HALF-HYPERS**

use yet another decoupling limit: extreme Higgs

- consider a  $\mathcal{N}=2$  gauge theory with group  $G_r$  of rank r
- take a v.e.v. of the adjoint field  $\langle \Phi \rangle \in \mathfrak{h}(G)$  s.t.

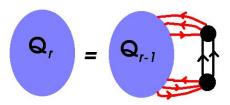
$$lpha_{\it a}(\langle \Phi 
angle) = egin{cases} t \ e^{i\phi}, & t 
ightarrow +\infty & \it a = i \ O(1) & ext{otherwise} \end{cases}$$

• states with electric weight  $\rho$  s.t.  $\rho(\langle \Phi \rangle) = O(t)$  decouple and we remain with a gauge theory with gauge group  $G_{r-1}$  whose Dynkin diagram is obtained by deleting the i-th node from that of G (coupled to specific matter)

e.g. 
$$G_7=E_7$$
 &  $\frac{1}{2}$  **56** choosing  $i=1$   $\longrightarrow$   $G_6=\mathrm{Spin}(12)$  &  $\frac{1}{2}$  **32**

$$\bullet \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ$$

- again, the decoupling limit should correspond to a controlled Abelian subcategory of  $\operatorname{rep}(Q_{G_r}, \mathcal{W}_{G_r})$
- one can choose  $(Q_{G_r}, \mathcal{W}_{G_r})$  in its mutation–class and the phase  $\phi$  so that  $\lambda(\cdot)$  is *non–negative* in the positive–cone  $K_0(\operatorname{rep}(Q_G, \mathcal{W}_G))_+$
- $Q_{G_{r-1}}$  is a full subquiver of  $Q_{G_r}$  and  $\mathcal{W}_{G_{r-1}}$  is just the restriction of  $\mathcal{W}_{G_r}$
- the complementary subquiver is a Kronecker one
- quiver recursion of the form



• if we know the simpler quiver  $Q_{G_{r-1}}$ , to get  $Q_{G_r}$  we need just the (red) arrows connecting the Kronecker to  $Q_{G_{r-1}}$ 

the red arrows are fixed by Dirac charge quantization

- by the recursion assumption, we know the representations  $X_{\alpha_s}$  associated to all simple–root W–bosons of  $G_r$
- under the maximal torus  $U(1)^r \subset G$  they have charges

$$q_a(X_{\alpha_b}) = C_{ab},$$
 Cartan matrix

then the magnetic charges must be

$$m_{\mathsf{a}}(X) = (C^{-1})_{\mathsf{a}\mathsf{b}} \left\langle \operatorname{\mathsf{dim}} X, \operatorname{\mathsf{dim}} X_{\alpha_{\mathsf{b}}} \right\rangle_{\mathsf{Dirac}}$$

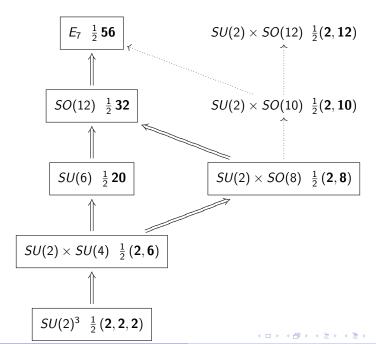
- $m_a(X) \in {}^L\Gamma_{\text{root}}$  for all X for a *unique* choice of red arrows
- $Q_{G_r}$  uniquely determined,  $W_{G_r}$  has some higher-order ambiguity which should be fixed in a different way

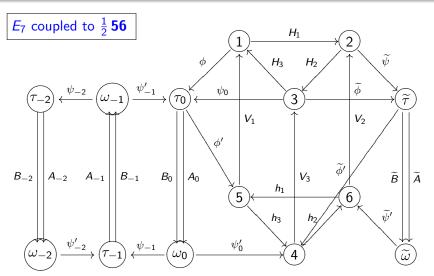
taking a suitable sequence of such Higgs decouplings

$$G_r \to G_{r-1} \to G_{r-2} \to \cdots \to G_k$$

we end up with a complete  $\mathcal{N}=2$  having  $G=SU(2)^k$  (they are essentially S-class theories of type  $A_1$ )

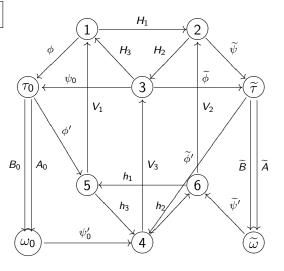
- all complete  $\mathcal{N}=2$  quivers are *known* by classification (equivalently, by ideal triangulation of their Gaiotto surface)
- inverting the Higgs procedure, we get the pair  $(Q_{G_r}, \mathcal{W}_{G_r})$  for the theory of interest by 'pulling back' the pair  $(Q_{\text{max comp}}, \mathcal{W}_{\text{max comp}})$  of their **maximal complete** (i.e.  $A_1$ ) **subsector**
- for the model of interest the 'pull back' chain is in the next slide





$$\begin{split} \mathcal{W}_{E_7} &= H_1 H_3 H_2 + h_3 h_1 h_2 + A \psi V_3 \psi' + B \psi H_2 V_2 h_2 \psi' + \phi V_1 \phi' + \psi V_3 h_3 \phi' + \\ \phi H_3 V_3 \psi' B + \widetilde{A} \widetilde{\psi} V_2 \widetilde{\psi}' + \widetilde{B} \widetilde{\psi} H_1 V_1 h_1 \widetilde{\psi}' + \widetilde{\phi} V_3 \widetilde{\phi}' + \widetilde{\psi} V_2 h_2 \widetilde{\phi}' + \widetilde{\phi} H_2 V_2 \widetilde{\psi}' \widetilde{B} + \\ &+ A_0 \psi'_{-1} B_{-1} \psi_{-1} - B_0 \psi'_{-1} A_{-1} \psi_{-1} + A_{-1} \psi'_{-2} B_{-2} \psi_{-2} - B_{-1} \psi'_{-2} A_{-2} \psi_{-2} \end{split}$$

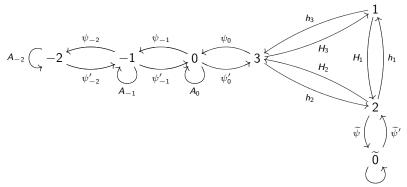
# SU(6) coupled to $\frac{1}{2}$ **20**



$$\mathcal{W}_{SU(6)} = H_1 H_3 H_2 + h_3 h_1 h_2 + A \psi V_3 \psi' + B \psi H_2 V_2 h_2 \psi' + \phi V_1 \phi' + \psi V_3 h_3 \phi' + \phi H_3 V_3 \psi' B + \widetilde{A} \widetilde{\psi} V_2 \widetilde{\psi}' + \widetilde{B} \widetilde{\psi} H_1 V_1 h_1 \widetilde{\psi}' + \widetilde{\phi} V_3 \widetilde{\phi}' + \widetilde{\psi} V_2 h_2 \widetilde{\phi}' + \widetilde{\phi} H_2 V_2 \widetilde{\psi}' \widetilde{B}$$

• higher terms in  $\mathcal{W}_G$  fixed by requiring  $\operatorname{rep}(Q_G,\mathcal{W}_G)$  to contain the right light subcategory  $\mathscr{L}=\operatorname{rep}(Q_G',\mathcal{W}_G')$  (at weak YM coupling, light vectors in one copy of  $\operatorname{Ad} G$  plus light hypers in half the expected rep.)

e.g. 
$$E_7 \& \frac{1}{2} \mathbf{56}$$
  $Q'_{E_7}$ 



$$\mathcal{W}'_{E_7} = H_1 H_3 H_2 + h_3 h_1 h_2 + \psi_0 (H_2 h_2 + h_3 H_3) \psi'_0 + \widetilde{\psi} (H_1 h_1 + h_2 H_2) \widetilde{\psi}' + \widetilde{A} + A_0 \psi_0 \psi'_0 + A_0 \psi'_{-1} \psi_{-1} - A_{-1} \psi_{-1} \psi'_{-1} + A_{-1} \psi'_{-2} \psi_{-2} - A_{-2} \psi_{-2} \psi'_{-2} + \widetilde{A} \widetilde{\psi} \widetilde{\psi}'.$$

comparison of  $G \& \mathbf{R}$  vs.  $G \& \frac{1}{2} \mathbf{R}$  (e.g.  $E_7 \& \mathbf{56}$  vs.  $E_7 \& \frac{1}{2} \mathbf{56}$ ) shows the kind of RT 'miracles' needed for consistency at weak coupling

- ullet bricks of  $\operatorname{rep}(Q_G,\mathcal{W}_G)$  should be labelled by  $\lambda\in\mathbb{P}^1$
- for  $\lambda \neq 0$  isomorphic to those of  $\mathcal{P}(G)$  (universality of the SYM sector) technically

$$\mathscr{L} = \bigvee_{\lambda \in \mathbb{P}^1} \mathscr{L}_{\lambda}, \qquad \mathscr{L}_{\lambda} \simeq \mathscr{L}^{\mathrm{SYM}}(\mathit{G})_{\lambda}, \text{ for } \lambda \neq 0$$

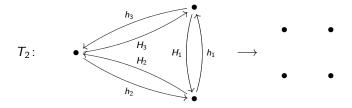
• for  $\lambda=0$  'half' the bricks of  $\mathcal{P}(G[i,1])$  (matter in the  $\frac{1}{2}$  **R**) technically

$$\operatorname{\mathsf{mod}} \mathcal{P}(G[i,1]) \xrightarrow{\operatorname{\mathsf{projection}}} \mathscr{L}_{\lambda=0}$$

- $\longrightarrow$  superficially impossible: the quiver  $Q'_G$  has one less node than G[i,1], dimension vectors different rank; superficially  $G[i,1] \not\subset Q'_G$
- $\longrightarrow$  consistency requires a RT 'miracle'  $G[i,1] \subset Q'_G$

'miracle' pull-back of a 'miracle' already in the complete subsector

• all quivers of the light subcategory  $\mathscr{L}$  for  $G \& \frac{1}{2} \mathbf{R}$  models contain



which corresponds to the Gaiotto  $A_1$  theory on  $S^2$  with three punctures M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984

- T<sub>2</sub> is 4 free hypers so the disconnected quiver on 4 nodes on the right
- this ' $T_2$  duality' produces the extra node we need at  $\lambda = 0$
- ' $T_2$  duality' plus some very special properties of Dynkin graphs G and G[i,1] imply that for our choice of  $W_G$  the pair  $(Q_G, W_G)$  has the right BPS spectrum (and physics) at weak coupling

### STRONG COUPLING

having determined the mutation class of  $(Q_G, \mathcal{W}_G)$ , we may study the non–perturbative physics in any regime, in particular at Strong Coupling

### natural question:

'Given a G &  $\frac{1}{2}$  R model find its <u>finite</u> BPS chambers (if any)'

By the 'mutation algorithm' [M. Alim, S.C., C. Cordova, S. Espahbodi, A. Rastogi, & C. Vafa, arXiv:1112.3984] this is a purely combinatoric problem for  $Q_G$ 

At the moment answers for  $G = SU(2) \times SO(2n)$  coupled to  $\frac{1}{2}$  (2, 2n)

- they all have finite chambers
- e.g.  $SU(2) \times SO(6)$  &  $\frac{1}{2}(\mathbf{2}, \mathbf{6})$  chambers with 21 and 27 hypers  $SU(2) \times SO(8)$  &  $\frac{1}{2}(\mathbf{2}, \mathbf{8})$  chamber with 48 hypers

however based on combinatorial identities different in nature with respect to the ones for the **full**-hyper case: in that case they are 'classical' identities, whereas in the **half**-hyper we have new 'miracolous' identities

#### CONCLUSIONS

- $\bullet$  the 'algebraic' approach to the 4d  $\mathcal{N}=2$  BPS spectra is an effective computational tool
- it gives explicit answers even for the trickiest theories as the half-hyper ones
- modulo some (non trivial) technicalities, once one has understood the  $A_1$  theories, all other (quiver)  $\mathcal{N}=2$  models are also understood
- the dictionary  $\mathcal{N}=2$  QFT  $\longleftrightarrow$  RT transforms well–known facts in physics into deep RT theorems, most of which unknown to the math literature. In Greg Moore's terminology, it is more 'Physical Mathematics' than 'Mathematical Physics'