Thin tubes in mathematical physics, global analysis and spectral geometry

Daniel Grieser

February 14, 2008
Overview

1. Setup

Problems in MP, SG, GA

Methods: ΨDO or no?

Results: Fat graphs
Quantum graphs
Expectations

Results: Convex domains

Daniel Grieser ()

Thin tubes

February 14, 2008 2 / 20
Overview

1 Setup

2 Problems in MP, SG, GA
Overview

1. Setup
2. Problems in MP, SG, GA
3. Thin tubes
Overview

1. Setup
2. Problems in MP, SG, GA
3. Thin tubes
4. Methods: ΨDO or no?

Results: Fat graphs
Quantum graphs
Expectations

Results: Convex domains
Overview

1. Setup
2. Problems in MP, SG, GA
3. Thin tubes
4. Methods: \(\Psi DO \) or no?
5. Results: Fat graphs
 - Quantum graphs
 - Expectations
 - Fat graph theorem
Overview

1. Setup
2. Problems in MP, SG, GA
3. Thin tubes
4. Methods: \(\Psi DO\) or no?

5. Results: Fat graphs
 - Quantum graphs
 - Expectations
 - Fat graph theorem

6. Results: Convex domains
Survey:

Details:

For global analysis: Hassell-Mazzeo-Melrose, Cappell-Lee-Miller, W.Müller, J.Müller-W.Müller, Park-Wojciechowski
Setup: Analysis

\[M = \text{compact Riemannian manifold with boundary} \quad (\text{ex.: } M \subset \mathbb{R}^n \text{ open}) \]
Setup: Analysis

\(M = \text{compact Riemannian manifold with boundary} \)
\(\text{(ex.: } M \subset \mathbb{R}^n \text{ open)} \)

Laplace-Beltrami operator \(\Delta \)

\(= -\sum_{i=1}^{n} \partial_{x_i}^2 \)

Eigenvalue problem

\[\Delta u = \lambda u \]
\((\lambda \in \mathbb{R}, u: M \rightarrow \mathbb{C} \text{ satisfying boundary condition, e.g. Dirichlet, Neumann, mixed, Robin, ...}) \)

Eigenvalues:

\(\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \)

Eigenfunctions:

\(u_1, u_2, u_3, \ldots \)

Scaling

\(\lambda(cM) = c^{-2} \lambda(M) \)
\((c > 0) \)

\(cM = \text{all lengths are multiplied by } c \)
Setup: Analysis

\[M = \text{compact Riemannian manifold with boundary} \quad (\text{ex.: } M \subset \mathbb{R}^n \text{ open}) \]

Laplace-Beltrami operator \(\Delta \)

Eigenvalue problem

\[\Delta u = \lambda u \]

(\(\lambda \in \mathbb{R}, \ u : M \to \mathbb{C} \) satisfying boundary condition, e.g. Dirichlet, Neumann, mixed, Robin, ...)

Eigenvalues:

\[\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \]

Eigenfunctions:

\[u_1, u_2, u_3, \ldots \]

Scaling

\[\lambda(cM) = c^{-2} \lambda(M) \quad (c > 0) \]

\(cM = \) all lengths are multiplied by \(c \)
Setup: Analysis

$M = \text{compact Riemannian manifold with boundary}$
(ex.: $M \subset \mathbb{R}^n$ open)

Laplace-Beltrami operator Δ

($= - \sum_{i=1}^{n} \partial^2_{x_i}$)

Eigenvalue problem

$$\Delta u = \lambda u$$

($\lambda \in \mathbb{R}$, $u : M \rightarrow \mathbb{C}$ satisfying boundary condition, e.g. Dirichlet, Neumann, mixed, Robin, ...)

Eigenvalues: $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$

Eigenfunctions: $u_1 \quad u_2 \quad u_3 \quad \ldots$

λ - eigenvalue

u - eigenfunction
Setup: Analysis

\(M = \text{compact Riemannian manifold with boundary}\)
(ex.: \(M \subset \mathbb{R}^n\) open)

Laplace-Beltrami operator \(\Delta\)

\[
\Delta u = \lambda u
\]

(\(\lambda \in \mathbb{R}, u : M \to \mathbb{C}\) satisfying boundary condition, e.g. Dirichlet, Neumann, mixed, Robin, ...)

Eigenvalues:
\[
\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots
\]

Eigenfunctions:
\[
u_1 \quad u_2 \quad u_3 \quad \ldots
\]

Scaling

\[
\lambda^{(cM)} = c^{-2}\lambda^{(M)} \quad (c > 0)
\]

\((cM = \text{all lengths are multiplied by } c)\)
Setup: Fat graphs
Data:

- Finite graph: $V = \text{vertices}$, $E = \text{edges}$
Setup: Fat graphs

Data:

- Finite graph: $V = \text{vertices}, \ E = \text{edges}$
- Edge lengths: $\ell : E \to (0, \infty)$
Setup: Fat graphs

Data:

- Finite graph: \(V = \) vertices, \(E = \) edges
- Edge lengths: \(\ell : E \rightarrow (0, \infty) \)
- Manifolds \(X^n_v \) for each \(v \in V \), \(Y^{n-1}_e \) for each \(e \in E \)
Setup: Fat graphs

Data:
- Finite graph: \(V = \text{vertices}, \ E = \text{edges} \)
- Edge lengths: \(\ell : E \to (0, \infty) \)
- Manifolds \(X^n_v \) for each \(v \in V \), \(Y_{e}^{n-1} \) for each \(e \in E \)

Fat graph \(M_\varepsilon \), thickness \(\varepsilon > 0 \)
Three problems

For a fat graph, determine asymptotics of $\lambda_k, \varepsilon, u_k, \varepsilon$ as $\varepsilon \to 0$.

Where is $\text{locmax} u_1, \{u_2 = 0\}$ for a convex planar domain?

Gluing formula for analytic torsion:

$$\tau(X_\ell \cup Y X_r) = \tau(X_\ell) + \tau(X_r) - ?(Y)$$

Daniel Grieser

Thin tubes

February 14, 2008
Three problems

(MP) (Mathematical Physics)
For a fat graph, determine asymptotics of $\lambda_{k,\varepsilon}$, $u_{k,\varepsilon}$ as $\varepsilon \to 0$
Three problems

(MP) (Mathematical Physics)
For a fat graph, determine asymptotics of $\lambda_{k,\varepsilon}$, $u_{k,\varepsilon}$ as $\varepsilon \to 0$

(SG) (Spectral Geometry)
Where is locmax u_1, $\{u_2 = 0\}$ for a convex planar domain?
Three problems

(MP) (Mathematical Physics)
For a fat graph, determine asymptotics of $\lambda_{k,\varepsilon}$, $u_{k,\varepsilon}$ as $\varepsilon \to 0$

(SG) (Spectral Geometry)
Where is $\text{locmax } u_1$, $\{u_2 = 0\}$ for a convex planar domain?

(GA) (Global Analysis)
Gluing formula for analytic torsion:

$$\tau(X_\ell \cup_Y X_r) = \tau(X_\ell) + \tau(X_r) - \tau(\varepsilon)$$
Why care?
Why care?

Quantum mechanics of 'thin' structures
- Carbohydrate molecules
- Quantum wires, highly integrated circuits
Why care?

Quantum mechanics of 'thin' structures
- Carbohydrate molecules
- Quantum wires, highly integrated circuits

Optical fibers
Why care?

MP Quantum mechanics of 'thin' structures
- Carbohydrate molecules
- Quantum wires, highly integrated circuits
- Optical fibers

SG Qualitative properties of solutions of PDE
Why care?

(MP) Quantum mechanics of 'thin' structures
- Carbohydrate molecules
- Quantum wires, highly integrated circuits
- Optical fibers

(SG) Qualitative properties of solutions of PDE

(GA) Decompose space into simple parts
A thin tube is...

an n-dimensional compact space M_ε of size

$\approx \varepsilon$ in $n - 1$ directions and

≈ 1 in one direction.
Common theme: Thin tubes

A thin tube is...

an n-dimensional compact space M_ε of size

$\approx \varepsilon$ in $n - 1$ directions and

≈ 1 in one direction.

(MP) Fat graph is thin tube
Common theme: Thin tubes

A thin tube is...

an n-dimensional compact space M_ε of size

$\approx \varepsilon$ in $n-1$ directions and

≈ 1 in one direction.

(MP) Fat graph is thin tube

(SG) No chance for fixed domain \Rightarrow should consider very eccentric domain

\[
\begin{align*}
\{ & \quad \approx \varepsilon \\
I & \quad \approx \varepsilon
\end{align*}
\]
A thin tube is...

an n-dimensional compact space M_ε of size

$\approx \varepsilon$ in $n-1$ directions and

≈ 1 in one direction.

(MP) Fat graph is thin tube

(SG) No chance for fixed domain \rightsquigarrow should consider very excentric domain

(GA) Scale X_ℓ, X_r to size ε, insert cylinder $\varepsilon Y \times I$, consider $\varepsilon \to 0$

(Fat graph for single edge)
A thin tube is...

an n-dimensional compact space M_ε of size

$\approx \varepsilon$ in $n - 1$ directions and

≈ 1 in one direction.

(MP) Fat graph is thin tube

(SG) No chance for fixed domain \leadsto should consider very excentric domain

\[\approx \varepsilon \]

(GA) Scale X_ℓ, X_r to size ε, insert cylinder $\varepsilon Y \times I$, consider $\varepsilon \to 0$

(Fat graph for single edge)
Methods

Type of problem: Singular perturbation/degeneration, multiscale

- Quadratic forms

 simple, robust, not sharp
Methods

Type of problem: Singular perturbation/degeneration, multiscale

- Quadratic forms: simple, robust, not sharp
- Matched asymptotic expansions: rigid geometry, sharp
Methods

Type of problem: Singular perturbation/degeneration, multiscale

- Quadratic forms: simple, robust, not sharp
- Matched asymptotic expansions: rigid geometry, sharp
- Matching of scattering solutions: simple, rigid geometry, very sharp
Methods

Type of problem: Singular perturbation/degeneration, multiscale

- Quadratic forms simple, robust, not sharp
- Matched asymptotic expansions rigid geometry, sharp
- Matching of scattering solutions simple, rigid geometry, very sharp
- Resolvent construction using adapted ΨDO calculus NOT simple, less rigid, sharp
ΨDO kernel philosophy

Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus:** $p \approx p'$
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- Classical calculus: $p \approx p'$
- b (or cone) calculus ($p = (x, y)$, $x > 0$):
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix).
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus**: $p \approx p'$
- **b (or cone) calculus** ($p = (x, y), x > 0$):
 - $x, x' > c, p \approx p'$
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- Classical calculus: $p \approx p'$
- b (or cone) calculus ($p = (x, y)$, $x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p - p'|}{x} \approx 0$
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)

What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus:** $p \approx p'$
- **b (or cone) calculus** ($p = (x, y)$, $x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p-p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p-p'|}{x} > c$ (or x, x' switched)
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus:** $p \approx p'$

- **b (or cone) calculus** ($p = (x, y)$, $x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p-p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p-p'|}{x} > c$ (or x, x' switched)

- **Classical with parameter/suspended/heat calculus**, $Q = (P - z)^{-1}$:
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus**: $p \approx p'$
- **b (or cone) calculus ($p = (x, y)$, $x > 0$)**:
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p - p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p - p'|}{x} > c$ (or x, x' switched)
- **Classical with parameter/suspended/heat calculus, $Q = (P - z)^{-1}$**:
 - $p \approx p'$, z bounded
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus:** $p \approx p'$
- **b (or cone) calculus** ($p = (x, y)$, $x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p-p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p-p'|}{x} > c$ (or x, x' switched)
- **Classical with parameter/suspended/heat calculus**, $Q = (P - z)^{-1}$:
 - $p \approx p'$, z bounded
 - $z|p - p'| \approx 1$, $z \to \infty$
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- Classical calculus: $p \approx p'$
- b (or cone) calculus ($p = (x, y), x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p-p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p-p'|}{x} > c$ (or x, x' switched)
- Classical with parameter/suspended/heat calculus, $Q = (P - z)^{-1}$:
 - $p \approx p'$, z bounded
 - $z|p - p'| \approx 1$, $z \to \infty$
- b-heat calculus, $Q = Q(x, y, x', y'; z)$: $x, x', p - p', z$
Assume P elliptic on M, $Q = P^{-1}$ (or parametrix)
What does ΨDO calculus tell us about $Q(p, p')$, $p, p' \in M$?

- **Classical calculus**: $p \approx p'$
- **b (or cone) calculus** ($p = (x, y)$, $x > 0$):
 - $x, x' > c$, $p \approx p'$
 - $x \approx 0$, $\frac{x}{x'} \approx 1$, $\frac{|p-p'|}{x} \approx 0$
 - $x \approx 0$, $\frac{|p-p'|}{x} > c$ (or x, x' switched)
- **Classical with parameter/suspended/heat calculus**, $Q = (P - z)^{-1}$:
 - $p \approx p'$, z bounded
 - $z |p - p'| \approx 1$, $z \to \infty$
- **b-heat calculus**, $Q = Q(x, y, x', y'; z)$: x, x', $p - p'$, z
- **Surgery calculus**, $Q = Q(x, y, x', y'; z; \varepsilon)$: x, x', $p - p'$, z, ε
Quantum graphs

Definition

Metric graph: (Finite) graph (V, E) with edge lengths

Quantum graph: Metric graph G with corner conditions for functions on edges

Special corner conditions:
For each $v \in V$ choose subspace $A_v \subset C(E(v))$, where $E(v) = \{e: e \sim v\}$.

\[w = (w_e)_{e \in E} \text{ satisfies corner condition } (A_v) \iff (w_e(v))_{e \sim v} \in A_v \cap A_v^\perp. \]

Kirchhoff corner condition: $A_v = \text{span}\{(1, 1, \ldots, 1)\}$: w continuous, sum of normal derivatives = 0 at v.

Decoupling: $A_v = \{0\}$: $w = 0$ at v, no relation between edges hitting v.
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
- **Quantum graph**: Metric graph \(G\) with *corner conditions* for functions on edges
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
- **Quantum graph**: Metric graph \(G\) with corner conditions for functions on edges

Special corner conditions:
For each \(v \in V\) choose subspace \(A_v \subset \mathbb{C}^{E(v)}\), where \(E(v) = \{e : e \sim v\}\).
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
- **Quantum graph**: Metric graph \(G\) with *corner conditions* for functions on edges

Special corner conditions:
For each \(v \in V\) choose subspace \(A_v \subset \mathbb{C}^{E(v)}\), where \(E(v) = \{e : e \sim v\}\). \(w = (w^e)_{e \in E}\) satisfies corner condition \((A_v)_{v \in V} \iff\)

\[
(w^e(v))_{e \sim v} \in A_v \\
(\partial_n w^e(v))_{e \sim v} \in A_v^\perp.
\]
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
- **Quantum graph**: Metric graph \(G\) with corner conditions for functions on edges

Special corner conditions:
For each \(v \in V\) choose subspace \(A_v \subset \mathbb{C}^{E(v)}\), where \(E(v) = \{e : e \sim v\}\).

\[w = (w^e)_{e \in E}\] satisfies corner condition \((A_v)_{v \in V} : \Leftrightarrow\]

\[(w^e(v))_{e \sim v} \in A_v\]

\[(\partial_n w^e(v))_{e \sim v} \in A_v^\perp.\]

Kirchhoff corner condition: \(A_v = \text{span}\{(1, 1, \ldots, 1)\} : w\) continuous, sum of normal derivatives \(= 0\) at \(v\).
Quantum graphs

Definition

- **Metric graph**: (Finite) graph \((V, E)\) with edge lengths
- **Quantum graph**: Metric graph \(G\) with corner conditions for functions on edges

Special corner conditions:
For each \(v \in V\) choose subspace \(A_v \subset \mathbb{C}^{E(v)}\), where \(E(v) = \{e : e \sim v\}\).

\(w = (w^e)_{e \in E}\) satisfies corner condition \((A_v)_{v \in V}\) if
\[
(w^e(v))_{e \sim v} \in A_v \\
(\partial_n w^e(v))_{e \sim v} \in A_v^\perp.
\]

Kirchhoff corner condition: \(A_v = \text{span}\{(1, 1, \ldots, 1)\}\): \(w\) continuous, sum of normal derivatives \(= 0\) at \(v\).

Decoupling: \(A_v = \{0\}\): \(w = 0\) at \(v\), no relation between edges hitting \(v\).
Expectations: Cylinder (with ends)

\[Y = \text{cross section}, \; \nu = \text{smallest eigenvalue of } \Delta_Y, \; \varphi = \text{eigenfunction} \]
Expectations: Cylinder (with ends)

\(Y = \text{cross section}, \ \nu = \text{smallest eigenvalue of } \Delta Y, \ \varphi = \text{eigenfunction} \)

Basic principle

Behavior of \(\lambda_{k, \epsilon} \) dominated by \(\nu \), for \(k \epsilon < C_0 \).
Expectations: Cylinder (with ends)

\[Y = \text{cross section}, \, \nu = \text{smallest eigenvalue of } \Delta_Y, \, \varphi = \text{eigenfunction} \]

Basic principle

Behavior of \(\lambda_{k,\varepsilon} \) dominated by \(\nu \), for \(k\varepsilon < C_0 \).

Cylinder \(\text{Cyl} = \varepsilon Y \times I \) (Dirichlet BC)
Expectations: Cylinder (with ends)

\[Y = \text{cross section}, \quad \nu = \text{smallest eigenvalue of } \Delta_Y, \quad \varphi = \text{eigenfunction} \]

Basic principle

Behavior of \(\lambda_{k,\varepsilon} \) dominated by \(\nu \), for \(k\varepsilon < C_0 \).

Cylinder \(\text{Cyl} = \varepsilon Y \times I \) (Dirichlet BC)

\[
\Delta_{\text{Cyl}} = \varepsilon^{-2} \Delta_Y + (-\partial^2_x)_I
\]

\[
\lambda^\text{Cyl}_{k,\varepsilon} = \varepsilon^{-2} \nu + k^2 \pi^2 |l|^{-2}
\]

\[
u_{k,\varepsilon}(x, y) = \varphi(y/\varepsilon) \cdot \sin(k\pi|l|^{-1}x)
\]
Expectations: Cylinder (with ends)

\[Y = \text{cross section}, \; \nu = \text{smallest eigenvalue of } \Delta_Y, \; \varphi = \text{eigenfunction} \]

Basic principle

Behavior of \(\lambda_{k,\varepsilon} \) dominated by \(\nu \), for \(k\varepsilon < C_0 \).

Cylinder with ends (Dirichlet BC)

\[
\Delta_{M_{\varepsilon}} \equiv \varepsilon^{-2} \Delta_Y + (-\partial^2_x)_I \\
\lambda_{k,\varepsilon} \equiv \varepsilon^{-2} \nu + k^2 \pi^2 |I|^{-2} + O(\varepsilon) \\
u_{k,\varepsilon}(x, y) \equiv \varphi(y/\varepsilon) \cdot \sin(k\pi|I|^{-1}x) + O(\varepsilon)
\]

(Perturbation is of same order as \(|I| \sim |I| + \varepsilon \))
Along any edge e: $u_k, \varepsilon \approx \phi(y/\varepsilon) \cdot \varepsilon X_v$, εX_v = eigenfunction of $-\partial^2_x$ on edges, with corner conditions.

Questions
Is this true?
If yes, which corner conditions?
Along any edge e:

$$u_{k,\varepsilon} \approx \varphi(y/\varepsilon) \cdot w_k^e(x),$$

w_k^e = eigenfunction of $-\partial^2_x$ of e.

$\lambda_{k,\varepsilon} = \varepsilon^{\nu}$ + $\mu_k + O(\varepsilon)$ (*).
Along any edge e:
\[u_{k,\varepsilon} \approx \varphi(y/\varepsilon) \cdot w_k^e(x), \]
\[w_k^e = \text{eigenfunction of } -\partial^2_x \text{ of } e. \]

Therefore:
\[\lambda_{k,\varepsilon} \overset{?}{=} \varepsilon^{-2} \nu + \mu_k + O(\varepsilon) \quad (*) \]

$\mu_k = \text{eigenvalues of } -\partial^2_x \text{ on edges, with corner conditions.}$
Along any edge e:

$$u_{k,\varepsilon} \approx \varphi\left(\frac{y}{\varepsilon}\right) \cdot w_{k}^{e}(x),$$

$$w_{k}^{e} = \text{eigenfunction of } -\partial_{x}^{2} \text{ of } e.$$

Therefore:

$$\lambda_{k,\varepsilon} \approx \varepsilon^{-2}\nu + \mu_{k} + O(\varepsilon)$$

$$\mu_{k} = \text{eigenvalues of } -\partial_{x}^{2} \text{ on edges, with corner conditions.}$$

Questions

- Is this true?
Along any edge e:
\[u_{k,\varepsilon} \approx \varphi(y/\varepsilon) \cdot w_k^e(x), \]
\[w_k^e = \text{eigenfunction of } -\partial_x^2 \text{ of } e. \]

Therefore:
\[\lambda_{k,\varepsilon} \approx \varepsilon^{-2}\nu + \mu_k + O(\varepsilon) \] (*

\[\mu_k = \text{eigenvalues of } -\partial_x^2 \text{ on edges, with corner conditions.} \]

Questions:
- Is this true?
- If yes, which corner conditions?
Rescaling: Long cylinders

\[M_\varepsilon \]

\[\varepsilon X_v \]

\[\varepsilon Y_v \]
Rescaling: Long cylinders

\[\varepsilon \rightarrow 0 \]

Eigenvalues: \[\lambda_k, \varepsilon \]

\[\varepsilon X_v \]

\[\varepsilon Y_e \]

\[M_\varepsilon \]

\[\varepsilon \rightarrow 0 \]
Rescaling: Long cylinders

\[M_\varepsilon \]

\[\varepsilon Y_e \]

\[\varepsilon X_v \]

\[\varepsilon \rightarrow 0 \]

\[\downarrow \]

\[G \]
Rescaling: Long cylinders

\[\varepsilon \rightarrow 0 \]

Eigenvalues: \(\lambda_k, \varepsilon \)

\[\varepsilon X_v \]

\[\varepsilon Y_v \]

\[G \]

\[\varepsilon^{-1} M_\varepsilon \approx \varepsilon^{-1} \]

\[v \]

\[X_v \]
Rescaling: Long cylinders

\[M_\varepsilon \quad \rightarrow \quad \varepsilon X_v \]

\[\varepsilon Y_e \]

\[\varepsilon^{-1} M_\varepsilon \quad \approx \quad \varepsilon^{-1} X_v \]

Eigenvalues: \(\lambda_k, \varepsilon\)
Rescaling: Long cylinders

\[M_\varepsilon \]

\[\varepsilon \rightarrow 0 \]

\[\varepsilon X_v \]

\[\varepsilon Y_e \]

\[\downarrow \varepsilon \rightarrow 0 \]

\[\varepsilon^{-1} M_\varepsilon \]

\[\varepsilon^{-1} \]

\[\approx \]

\[\varepsilon^{-1} \]

\[\downarrow \varepsilon \rightarrow 0 \]

\[X^\infty = \bigcup_v X_v^\infty \]

\[G \]

\[X_v^\infty \]
Rescaling: Long cylinders

\[M_\varepsilon \xrightarrow{\varepsilon \to 0} \varepsilon Y_e \]

\[\varepsilon X_v \]

\[\varepsilon^{-1} M_\varepsilon \xrightarrow{\varepsilon \to 0} \approx \varepsilon^{-1} Y_e \]

\[Y_e \]

\[\varepsilon X_v \]

\[G \]

Eigenvalues:

\[\lambda_{k,\varepsilon} \]

\[\varepsilon^2 \lambda_{k,\varepsilon} \]

\[X^\infty = \bigcup_v X_v^\infty \]

\[X_v^\infty \]
Scattering theory and Theorem

\[\sigma_{\text{cont}}(\Delta \chi^\infty) = [\nu, \infty) \]
Scattering theory and Theorem

- $\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty)$
- $\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \to \infty\}$
Scattering theory and Theorem

- $\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty)$
- $\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \to \infty\}$
Scattering theory and Theorem

- $\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty)$
- $\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \to \infty\}$
- Scattering matrix $S_\nu(\lambda) \in \text{End}(\mathbb{C}^{E(\nu)})$: Solutions of $\Delta u = \lambda u$ in X_ν^∞ are
Scattering theory and Theorem

- \(\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty) \)
- \(\sigma_{\text{disc}}(\Delta X^\infty) = \{ \tau_1 \leq \tau_2 \leq \cdots \rightarrow \infty \} \)
- Scattering matrix \(S_v(\lambda) \in \text{End}(\mathbb{C}^{E(v)}) \): Solutions of \(\Delta u = \lambda u \) in \(X_v^\infty \) are

\[
u(x, y) = e^{-ix\sqrt{\lambda - \nu}} \varphi(y) \tilde{a} + e^{ix\sqrt{\lambda - \nu}} \varphi(y) S_v(\lambda) \tilde{a} + O(e^{-cx}),
\]
Scattering theory and Theorem

- $\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty)$
- $\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \rightarrow \infty\}$
- Scattering matrix $S_v(\lambda) \in \text{End}(\mathbb{C}^{E(v)})$: Solutions of $\Delta u = \lambda u$ in X^∞_v are
 $$u(x, y) = e^{-ix\sqrt{\lambda - \nu}}\varphi(y)\vec{a} + e^{ix\sqrt{\lambda - \nu}}\varphi(y)S_v(\lambda)\vec{a} + O(e^{-cx}), \quad \vec{a} \in \mathbb{C}^{E(v)}$$
Scattering theory and Theorem

- $\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty)$
- $\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \to \infty\}$
- Scattering matrix $S_v(\lambda) \in \text{End}(\mathbb{C}^{E(v)})$: Solutions of $\Delta u = \lambda u$ in X_v^∞ are

 $u(x, y) = e^{-ix\sqrt{\lambda - \nu}}\varphi(y)\bar{a} + e^{ix\sqrt{\lambda - \nu}}\varphi(y)S_v(\lambda)\bar{a} + O(e^{-cx})$, \quad $\bar{a} \in \mathbb{C}^{E(v)}$

- $S_v(\nu)$ is involution.
Scattering theory and Theorem

- \(\sigma_{\text{cont}}(\Delta X^\infty) = [\nu, \infty) \)
- \(\sigma_{\text{disc}}(\Delta X^\infty) = \{\tau_1 \leq \tau_2 \leq \cdots \to \infty\} \)
- Scattering matrix \(S_v(\lambda) \in \text{End}(\mathbb{C}^E(v)) \): Solutions of \(\Delta u = \lambda u \) in \(X_v^\infty \) are
 \[
 u(x, y) = e^{-i x \sqrt{\lambda - \nu}} \varphi(y) \vec{a} + e^{i x \sqrt{\lambda - \nu}} \varphi(y) S_v(\lambda) \vec{a} + O(e^{-c x}), \quad \vec{a} \in \mathbb{C}^E(v)
 \]
- \(S_v(\nu) \) is involution.

Theorem

Let \(A_v \) be the \((+1)\)-eigenspace of \(S_v(\nu) \). Let \(\mu_k \) be the eigenvalues of the quantum graph \(G \) with corner conditions \((A_v)_{v \in V} \). Then the eigenvalues on \(M_{\varepsilon} \) are

\[
\begin{align*}
\lambda_{k, \varepsilon} &= \varepsilon^{-2} \tau_k + O(e^{-c/\varepsilon}), & k = 1, \ldots, D \\
\lambda_{k, \varepsilon} &= \varepsilon^{-2} \nu + \mu_{k-D} + O(\varepsilon), & k > D
\end{align*}
\]
Remarks

Theorem

\(A_v = (+1)\)-eigenspace of \(S_v(\nu) \), \(\mu_k = \text{quantum graph eigenvalues} \)

\[
\lambda_{k,\varepsilon} = \varepsilon^{-2} \tau_k + O(e^{-c/\varepsilon}), \quad k = 1, \ldots, D
\]

\[
\lambda_{k,\varepsilon} = \varepsilon^{-2} \nu + \mu_{k-D} + O(\varepsilon), \quad k > D
\]
Remarks

Theorem

\(A_v = (+1) \text{-eigenspace of } S_v(\nu), \mu_k = \text{quantum graph eigenvalues} \)

\[\lambda_{k, \varepsilon} = \varepsilon^{-2} \tau_k + O(e^{-c/\varepsilon}), \quad k = 1, \ldots, D \]

\[\lambda_{k, \varepsilon} = \varepsilon^{-2} \nu + \mu_{k-D} + O(\varepsilon), \quad k > D \]

- More precisely: full convergent asymptotics, also for eigenfunctions
Remarks

Theorem

\(A_\nu = (+1)\text{-eigenspace of } S_\nu(\nu), \mu_k = \text{quantum graph eigenvalues} \)

\[
\begin{align*}
\lambda_{k,\varepsilon} &= \varepsilon^{-2}\tau_k + O(e^{-c/\varepsilon}), & k &= 1, \ldots, D \\
\lambda_{k,\varepsilon} &= \varepsilon^{-2}\nu + \mu_{k-D} + O(\varepsilon), & k &> D
\end{align*}
\]

- More precisely: full convergent asymptotics, also for eigenfunctions
- \(\exists \) eigenvalues \(\ll \varepsilon^{-2}\nu \) (compare expectation)
Remarks

Theorem

$A_v = (+1)$-eigenspace of $S_v(\nu)$, $\mu_k = \text{quantum graph eigenvalues}$

\[
\begin{align*}
\lambda_{k,\varepsilon} &= \varepsilon^{-2}\tau_k + O(e^{-c/\varepsilon}), & k &= 1, \ldots, D \\
\lambda_{k,\varepsilon} &= \varepsilon^{-2}\nu + \mu_{k-D} + O(\varepsilon), & k &> D
\end{align*}
\]

- More precisely: full convergent asymptotics, also for eigenfunctions
- \exists eigenvalues $<< \varepsilon^{-2}\nu$ (compare expectation)
- Neumann boundary condition $\Leftrightarrow \nu = 0$, Kirchhoff
 (Colin-de-Verdière 1986, Rubinstein/Schatzmann 2001,...)
Theorem

\[A_\nu = (+1)\text{-eigenspace of } S_\nu(\nu), \mu_k = \text{quantum graph eigenvalues} \]

\[\lambda_{k,\varepsilon} = \varepsilon^{-2}\tau_k + O(e^{-c}/\varepsilon), \quad k = 1, \ldots, D \]
\[\lambda_{k,\varepsilon} = \varepsilon^{-2}\nu + \mu_{k-D} + O(\varepsilon), \quad k > D \]

- More precisely: full convergent asymptotics, also for eigenfunctions
- \(\exists \) eigenvalues \('<<\varepsilon^{-2}\nu \) (compare expectation)
- Neumann boundary condition \(\Leftrightarrow \nu = 0 \), Kirchhoff
 (Colin-de-Verdière 1986, Rubinstein/Schatzmann 2001,...)
- The \((A_\nu) \) depend transcendentally on geometry of \((Y_e, X_\nu) \). But:
Theorem

\[A_v = (+1)\text{-eigenspace of } S_v(\nu), \mu_k = \text{quantum graph eigenvalues} \]

\[
\lambda_{k,\varepsilon} = \varepsilon^{-2} \tau_k + O(e^{-c/\varepsilon}), \quad k = 1, \ldots, D \\
\lambda_{k,\varepsilon} = \varepsilon^{-2} \nu + \mu_{k-D} + O(\varepsilon), \quad k > D
\]

- More precisely: full convergent asymptotics, also for eigenfunctions
- \(\exists \) eigenvalues \(\ll \varepsilon^{-2} \nu \) (compare expectation)
- Neumann boundary condition \(\Leftrightarrow \nu = 0 \), Kirchhoff
 (Colin-de-Verdière 1986, Rubinstein/Schatzmann 2001,...)
- The \((A_v) \) depend transcendentally on geometry of \((Y_e, X_v) \). But:

Theorem

For \(\nu > 0 \) and generic \(Y_e, X_v \) one has \(A_v = 0 \) for all \(\nu \), i.e. **decoupling.**
Sketch of proof

- **Step 1**: Show that such eigenvalues exist:

 Use scattering solution/eigenfunction on \mathbf{X}_∞ to construct approximate eigenfunctions on \mathbf{M}_{ε}. For $\lambda > \nu$, this gives coupling condition

 $$\det(I - e^{i\alpha\varepsilon} - 1 L_S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \quad (*)$$

 Spectral approximation lemma \Rightarrow \exists eigenvalues close to solutions.

- **Step 2**: Show that all eigenvalues are obtained this way:

 - $\lambda < \nu$: easy with exponential damping
 - $\lambda \geq \nu$: A priori estimates \Rightarrow eigenfunctions on \mathbf{M}_{ε} are close to scattering solutions.

 Stability analysis of $(*)$.

Daniel Grieser ()
Thin tubes
February 14, 2008 17 / 20
Sketch of proof

Step 1: Show that such eigenvalues exist:
- Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε

$$\det(I - e^{i\alpha\varepsilon} - 1L_S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu})$$

Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions

Step 2: Show that all eigenvalues are obtained this way:
- $\lambda < \nu$: easy with exponential damping
- $\lambda \geq \nu$: A priori estimates \Rightarrow eigenfunctions on M_ε are close to scattering solutions.

Stability analysis of (*)

Daniel Grieser ()
Thin tubes
February 14, 2008 17 / 20
Step 1: Show that such eigenvalues exist:

- Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε
- For $\lambda > \nu$ this gives coupling condition

$$\det(I - e^{i\alpha\varepsilon^{-1}L}S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \quad (*)$$
Sketch of proof

- **Step 1**: Show that such eigenvalues exist:
 - Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε
 - For $\lambda > \nu$ this gives coupling condition
 \[
 \det(I - e^{i\alpha\varepsilon^{-1}H}S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \quad (*)
 \]
 - Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions λ

- **Step 2**: Show that all eigenvalues are obtained this way:
 - $\lambda < \nu$: easy with exponential damping
 - $\lambda \geq \nu$: A priori estimates \Rightarrow eigenfunctions on M_ε are close to scattering solutions.
 - Stability analysis of (*)
Sketch of proof

- Step 1: Show that such eigenvalues exist:
 - Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε.
 - For $\lambda > \nu$ this gives coupling condition
 \[
 \det(I - e^{i\alpha \varepsilon^{-1} L} S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu})
 \] (*)
 - Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions λ
- Step 2: Show that all eigenvalues are obtained this way:
Sketch of proof

- **Step 1**: Show that such eigenvalues exist:
 - Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε
 - For $\lambda > \nu$ this gives coupling condition
 \[
 \det(I - e^{i\alpha \varepsilon^{-1} L} S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \quad (*)
 \]
 - Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions λ

- **Step 2**: Show that all eigenvalues are obtained this way:
 - $\lambda < \nu$: easy with exponential damping
Sketch of proof

- **Step 1:** Show that such eigenvalues exist:
 - Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε
 - For $\lambda > \nu$ this gives coupling condition
 \[\det(I - e^{i\alpha\varepsilon^{-1}L}S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \]

- Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions λ

- **Step 2:** Show that all eigenvalues are obtained this way:
 - $\lambda < \nu$: easy with exponential damping
 - $\lambda \geq \nu$: A priori estimates \Rightarrow eigenfunctions on M_ε are close to scattering solutions.
Sketch of proof

- **Step 1:** Show that such eigenvalues exist:
 - Use scattering solution/eigenfunction on X^∞ to construct approximate eigenfunctions on M_ε
 - For $\lambda > \nu$ this gives coupling condition
 \[
 \det(I - e^{i\alpha\varepsilon^{-1}}L S(\lambda)) = 0 \quad (\alpha = \sqrt{\lambda - \nu}) \quad (*)
 \]
 - Spectral approximation lemma $\Rightarrow \exists$ eigenvalues close to solutions λ

- **Step 2:** Show that all eigenvalues are obtained this way:
 - $\lambda < \nu$: easy with exponential damping
 - $\lambda \geq \nu$: A priori estimates \Rightarrow eigenfunctions on M_ε are close to scattering solutions.
 - Stability analysis of $(*)$.
Expectations: Variable thickness

\[Y = Y(x) \text{ cross section at } x \in I \]

\[\nu(x) = \text{smallest eigenvalue of } \Delta Y(x) \]
Y = Y(x) cross section at \(x \in I \)
\(\nu(x) \) = smallest eigenvalue of \(\Delta Y(x) \)

By basic principle:

\[
\Delta_{M_\epsilon} \approx P_\epsilon := \epsilon^{-2} \nu(x) + (-\partial_x^2)
\]

\(P_\epsilon \): semiclassical Schrödinger operator
Expectations: Variable thickness

$Y = Y(x)$ cross section at $x \in I$

$\nu(x) =$ smallest eigenvalue of $\Delta Y(x)$

By basic principle:

$$\Delta_{\mathcal{M}_\varepsilon} \approx P_\varepsilon := \varepsilon^{-2} \nu(x) + (-\partial_x^2)$$

P_ε: semiclassical Schrödinger operator

$$\lambda_{k,\varepsilon} \approx k\text{th eigenvalue of } P_\varepsilon$$

$u_{k,\varepsilon} \approx \text{product structure}$
Results: Spectral geometry

\[M \subset \mathbb{R}^2 \text{ convex.} \]

\[u_1: \text{ unique maximum at locmax} \]

\[u_2: \text{ nodal line} \]

\[u_1 - u_2(0) \]

Let \(\text{diam } M = 1, \text{ inr } M = \varepsilon. \)

The location of \(\text{locmax } u_1 \) and of \(u_1 - u_2(0) \) is determined geometrically up to an error \(C \) by solution of ODE up to an error \(C \varepsilon \).

This is optimal in order of magnitude.

Remark: For optimality need third term (\(O(\varepsilon) \)) in asymptotics.
$M \subset \mathbb{R}^2$ convex.

u_1: unique maximum at $\text{locmax } u_1$

u_2: nodal line $u_2(0)$

Let $\text{diam } M = 1$, $\text{inr } M = \varepsilon$.

The location of $\text{locmax } u_1$ and of $u_2(0)$ is determined geometrically up to an error C by solution of ODE up to an error $C\varepsilon$.

This is optimal in order of magnitude.

Remark: For optimality need third term ($O(\varepsilon)$) in asymptotics.
Results: Spectral geometry

\[M \subset \mathbb{R}^2 \text{ convex.} \]

\[u_1: \text{ unique maximum at } \text{locmax } u_1 \]

\[\approx \varepsilon \]
$M \subset \mathbb{R}^2$ convex.

u_1: unique maximum at locmax u_1

u_2: nodal line

$u_2^{-1}(0)$
M \subset \mathbb{R}^2 \text{ convex.}

u_1: \text{ unique maximum at locmax } u_1

u_2: \text{ nodal line } u_2^{-1}(0)

Let \text{diam } M = 1, \text{ inr } M = \varepsilon.

- The location of locmax } u_1 \text{ and of } u_2^{-1}(0) \text{ is determined geometrically up to an error } C
- by solution of ODE \text{ up to an error } C\varepsilon

This is optimal in order of magnitude.

Remark: For optimality need third term \(O(\varepsilon)\) in asymptotics
Thin tube problems arise in many contexts. Analysis of thin tube problems:

- (singular) ΨDO method
- 'direct' methods

Fat graphs decouple generically (non-Neumann BC)

Higher order asymptotics have applications.
Thin tube problems arise in many contexts
Thin tube problems arise in many contexts

Analysis of thin tube problems:
Summary

- Thin tube problems arise in many contexts
- Analysis of thin tube problems:
 - (singular) \(\Psi \)DO method

Fat graphs decouple generically (non-Neumann BC)
Higher order asymptotics have applications

Daniel Grieser ()
Thin tubes
February 14, 2008
Thin tube problems arise in many contexts

Analysis of thin tube problems:
- (singular) ΨDO method
- 'direct' methods
Summary

- Thin tube problems arise in many contexts
- Analysis of thin tube problems:
 - (singular) ΨDO method
 - 'direct' methods
- Fat graphs decouple generically (non-Neumann BC)
Thin tube problems arise in many contexts

Analysis of thin tube problems:
 - (singular) ΨDO method
 - 'direct' methods

Fat graphs decouple generically (non-Neumann BC)

Higher order asymptotics have applications