Sparse Fourier Approximation in High Dimensions

Mark Iwen

Institute for Mathematics and Its Applications (IMA)
University of Minnesota

June 10, 2010
The Goal: Sparse Signal Recovery

Frequency Sparse Signal

$5 \sin(x) + \sin(100^\circ x)$

x
Why Fourier Sparse?

Motivated by
Applications and problems in function learning, interpolation, and numerical methods...

- Medical Imaging [Lustig et al., 2007] in 3D.
- Function Learning: Boolean circuits, Complexity, Property Testing, and more... [Mansour, Matulef, Akavia, ...]
- Streaming algorithms, Massive Datasets [Gilbert, Indyk, Muthukrishnan, Strauss, ...]
- Faster approximate FFTs: Numerical methods for multiscale problems [Daubechies et al., 2007]
Why Fourier Sparse?

Motivated by
Applications and problems in function learning, interpolation, and numerical methods...

- Medical Imaging [Lustig et al., 2007] in 3D.
- Function Learning: Boolean circuits, Complexity, Property Testing, and more... [Mansour, Matulef, Akavia, ...]
- Streaming algorithms, Massive Datasets [Gilbert, Indyk, Muthukrishnan, Strauss, ...]
- Faster approximate FFTs: Numerical methods for multiscale problems [Daubechies et al., 2007]
Why Fourier Sparse?

Motivated by
Applications and problems in function learning, interpolation, and numerical methods...

- Medical Imaging [Lustig et al., 2007] in 3D.
- Function Learning: Boolean circuits, Complexity, Property Testing, and more... [Mansour, Matulef, Akavia, ...]
- Streaming algorithms, Massive Datasets [Gilbert, Indyk, Muthukrishnan, Strauss, ...]
- Faster approximate FFTs: Numerical methods for multiscale problems [Daubechies et al., 2007]
Why Fourier Sparse?

Motivated by
Applications and problems in function learning, interpolation, and numerical methods...

- Medical Imaging [Lustig et al., 2007] in 3D.
- Function Learning: Boolean circuits, Complexity, Property Testing, and more... [Mansour, Matulef, Akavia, ...]
- Steaming algorithms, Massive Datasets [Gilbert, Indyk, Muthukrishnan, Strauss, ...]
- Faster approximate FFTs: Numerical methods for multiscale problems [Daubechies et al., 2007]
Why Fourier Sparse?

Motivated by

Applications and problems in function learning, interpolation, and numerical methods...

- Medical Imaging [Lustig et al., 2007] in 3D.
- Function Learning: Boolean circuits, Complexity, Property Testing, and more... [Mansour, Matulef, Akavia, ...]
- Streaming algorithms, Massive Datasets [Gilbert, Indyk, Muthukrishnan, Strauss, ...]
- Faster approximate FFTs: Numerical methods for multiscale problems [Daubechies et al., 2007]
Problem Setup

Recover $f : [0, 2\pi]^D \rightarrow \mathbb{C}$ well approximated by k terms in the D-dimensional tensor product basis of Trigonometric polynomials

$$f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i \vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right)^D \cap \mathbb{Z}^D$$

- Use as few samples from f as possible.
- Obtain strong approximation error guarantees.
- Runtime polynomial in k, D, and $\log N$.
Problem Setup

Recover $f : [0, 2\pi]^D \rightarrow \mathbb{C}$ well approximated by k terms in the D-dimensional tensor product basis of Trigonometric polynomials

$$f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i \vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right]^D \cap \mathbb{Z}^D$$

- Use as few samples from f as possible.
- Obtain strong approximation error guarantees.
- Runtime polynomial in k, D, and $\log N$.
Recover $f : [0, 2\pi]^D \mapsto \mathbb{C}$ well approximated by k terms in the D-dimensional tensor product basis of Trigonometric polynomials

$$f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i \vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right]^D \cap \mathbb{Z}^D$$

- Use as few samples from f as possible.
- Obtain strong approximation error guarantees.
- Runtime polynomial in k, D, and $\log N$.
Problem Setup

Recover $f : [0, 2\pi]^D \mapsto \mathbb{C}$ well approximated by k terms in the D-dimensional tensor product basis of Trigonometric polynomials

$$f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i \vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left[\frac{N}{2}, \frac{N}{2}\right]^D \cap \mathbb{Z}^D$$

- Use as few samples from f as possible.
- Obtain strong approximation error guarantees.
- Runtime polynomial in k, D, and $\log N$.
We will consider \hat{f} to be in l^1
- $\tilde{\hat{f}}$, a vector of the lowest modes in \mathbb{C}^{N^D}
- $\tilde{\hat{f}}$, a sequence consisting of \hat{f} followed by zeros
- \hat{f}^{opt_k}, an optimal k-term approximation to \hat{f}

$$f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i\vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right)^D \cap \mathbb{Z}^D$$
Notation

Recover

\[f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i\vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right]^D \cap \mathbb{Z}^D \]

- We will consider \(\hat{f} \) to be in \(l^1 \)
 - \(\vec{\hat{f}} \), a vector of the lowest modes in \(\mathbb{C}^{N^D} \)
 - \(\vec{\hat{f}} \), a sequence consisting of \(\vec{\hat{f}} \) followed by zeros
 - \(\vec{\hat{f}}_{opt} \), an optimal \(k \)-term approximation to \(\vec{\hat{f}} \)
Recover

\[f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i\vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right)^D \cap \mathbb{Z}^D \]

- We will consider \(\hat{f} \) to be in \(L^1 \)
- \(\vec{f} \), a vector of the lowest modes in \(\mathbb{C}^{N^D} \)
- \(\vec{f} \), a sequence consisting of \(\vec{f} \) followed by zeros
- \(\vec{f}_{\text{opt}} \), an optimal \(k \)-term approximation to \(\vec{f} \)
Recover

\[f(\vec{x}) \approx \sum_{j=1}^{k} \hat{f}(\vec{\omega}_j) \cdot e^{i\vec{x} \cdot \vec{\omega}_j}, \quad \Omega = \{\vec{\omega}_1, \ldots, \vec{\omega}_k\} \subset \left(\frac{N}{2}, \frac{N}{2}\right)^D \cap \mathbb{Z}^D \]

- We will consider \(\hat{f} \) to be in \(l^1 \)
- \(\vec{\hat{f}} \), a vector of the lowest modes in \(\mathbb{C}^{N^D} \)
- \(\vec{\hat{f}} \), a sequence consisting of \(\vec{\hat{f}} \) followed by zeros
- \(\vec{\hat{f}}_{\text{opt}} \), an optimal \(k \)-term approximation to \(\vec{\hat{f}} \)
Recover

\[f(\mathbf{x}) \approx \sum_{j=1}^{k} \hat{f}(\mathbf{\omega}_j) \cdot e^{i \mathbf{x} \cdot \mathbf{\omega}_j}, \quad \Omega = \{ \mathbf{\omega}_1, \ldots, \mathbf{\omega}_k \} \subset \left(\frac{N}{2}, \frac{N}{2} \right)^D \cap \mathbb{Z}^D \]

- We will consider \(\hat{f} \) to be in \(L^1 \)
- \(\mathbf{\hat{f}} \), a vector of the lowest modes in \(\mathbb{C}^{N^D} \)
- \(\mathbf{\tilde{f}} \), a sequence consisting of \(\mathbf{\hat{f}} \) followed by zeros
- \(\mathbf{\hat{f}}_{\text{opt}} \), an optimal \(k \)-term approximation to \(\mathbf{\hat{f}} \)
Deterministic Result

Suppose $f : [0, 2\pi]^D \mapsto \mathbb{C}$ has $\hat{f} \in l^1$ for $N, D, k, \epsilon^{-1} \in \mathbb{N}$. Then, a simple algorithm can output an $\tilde{x}_S \in \mathbb{C}^{N^D}$ satisfying

$$\| \hat{f} - \tilde{x}_S \|_2 \leq \| \hat{f} - \hat{f}_{k}^\text{opt} \|_2 + \frac{\epsilon \cdot \| \hat{f} - \hat{f}_{(k/\epsilon)}^\text{opt} \|_1}{\sqrt{k}} + 22\sqrt{k} \cdot \| \hat{f} - \tilde{f} \|_1.$$

The runtime as well as the number of function evaluations of f are both

$$O \left(\frac{k^2 \cdot D^4 \cdot \log^4 N}{\epsilon^2 \cdot \log D} \right).$$

- The recovery method requires only sorting, FFTs, and the Euclidean algorithm as subcomponents.
Deterministic Result

Suppose \(f : [0, 2\pi]^D \rightarrow \mathbb{C} \) has \(\hat{f} \in l^1 \) for \(N, D, k, \epsilon^{-1} \in \mathbb{N} \). Then, a simple algorithm can output an \(\vec{x}_S \in \mathbb{C}^{N^D} \) satisfying

\[
\| \hat{f} - \vec{x}_S \|_2 \leq \| \hat{f} - \hat{f}_{k, \text{opt}} \|_2 + \frac{\epsilon \cdot \| \hat{f} - \hat{f}_{k, \text{opt}}(k/\epsilon) \|_1}{\sqrt{k}} + 22 \sqrt{k} \cdot \| \hat{f} - \vec{f} \|_1.
\]

The runtime as well as the number of function evaluations of \(f \) are both

\[
O \left(\frac{k^2 \cdot D^4 \cdot \log^4 N}{\epsilon^2 \cdot \log D} \right).
\]

- The recovery method requires only sorting, FFTs, and the Euclidean algorithm as subcomponents.
Random Nonuniform Result

Suppose $f : [0, 2\pi]^D \mapsto \mathbb{C}$ has $\hat{f} \in l^1$ for $N, D, k, \epsilon^{-1} \in \mathbb{N}$. Then, a simple algorithm can output an $\tilde{x}_S \in \mathbb{C}^{ND}$ satisfying

$$
\|\tilde{f} - \tilde{x}_S\|_2 \leq \|\tilde{f} - \tilde{f}_k^{\text{opt}}\|_2 + \frac{\epsilon \cdot \|\tilde{f} - \tilde{f}_k^{(k/\epsilon)}\|_1}{\sqrt{k}} + 22 \sqrt{k} \cdot \|\tilde{f} - \tilde{f}\|_1
$$

with nonuniform probability greater than $1 - \frac{1}{N^c}$. The runtime as well as the number of function evaluations of f are both

$$
O \left(\frac{k \cdot D^4 \cdot \log^4 N \cdot \log \left(\frac{k \log N}{\epsilon} \right)}{\epsilon \cdot \log \log N} \right).
$$

- The recovery method still only requires sorting, FFTs, and the Euclidean algorithm as subcomponents.
Random Nonuniform Result

Suppose \(f : [0, 2\pi]^D \mapsto \mathbb{C} \) has \(\hat{f} \in l^1 \) for \(N, D, k, \epsilon^{-1} \in \mathbb{N} \). Then, a simple algorithm can output an \(\tilde{x}_S \in \mathbb{C}^{ND} \) satisfying

\[
\left\| \hat{f} - \tilde{x}_S \right\|_2 \leq \left\| \hat{f} - \hat{f}^{\text{opt}}_k \right\|_2 + \frac{\epsilon \cdot \left\| \hat{f} - \hat{f}^{\text{opt}}_{(k/\epsilon)} \right\|_1}{\sqrt{k}} + 22 \sqrt{k} \cdot \left\| \hat{f} - \bar{\hat{f}} \right\|_1
\]

with nonuniform probability greater than \(1 - \frac{1}{N_c} \). The runtime as well as the number of function evaluations of \(f \) are both

\[
O \left(k \cdot D^4 \cdot \log^4 N \cdot \log \left(\frac{k \log N}{\epsilon} \right) \right) .
\]

- The recovery method still only requires sorting, FFTs, and the Euclidean algorithm as subcomponents.
Proof Overview

1. Develop good binary measurement matrices, $\mathcal{M} \in \{0, 1\}^{m \times N}$, with both analytic and combinatorial structure.

2. Develop fast recovery methods for $f : [0, 2\pi] \mapsto \mathbb{C}$ by utilizing the combinatorial structure of \mathcal{M}.

3. Map $f : [0, 2\pi]^D \mapsto \mathbb{C}$ to a one-dimensional function.
Proof Elements

Proof Overview

1. Develop good binary measurement matrices, $\mathcal{M} \in \{0, 1\}^{m \times N}$, with both analytic and combinatorial structure.

2. Develop fast recovery methods for $f : [0, 2\pi] \mapsto \mathbb{C}$ by utilizing the combinatorial structure of \mathcal{M}.

3. Map $f : [0, 2\pi]^D \mapsto \mathbb{C}$ to a one dimensional function.
1. Develop good binary measurement matrices, \(\mathcal{M} \in \{0, 1\}^{m \times N} \), with both analytic and combinatorial structure.

2. Develop fast recovery methods for \(f : [0, 2\pi] \rightarrow \mathbb{C} \) by utilizing the combinatorial structure of \(\mathcal{M} \).

3. Map \(f : [0, 2\pi]^D \rightarrow \mathbb{C} \) to a one dimensional function.
Extending to Many Dimensions

Sample $f^{\text{new}}(x) = f\left(x \cdot \frac{\tilde{N}}{P_1}, \ldots, x \cdot \frac{\tilde{N}}{P_D}\right)$, with $\tilde{N} = \prod_{d=1}^{D} P_d > N^D$

- Works because $\mathbb{Z}_{\tilde{N}}$ is homomorphic to $\mathbb{Z}_{P_1} \times \cdots \times \mathbb{Z}_{P_D}$.
Sample $f^{\text{new}}(x) = f \left(x \cdot \frac{\tilde{N}}{P_1}, \ldots, x \cdot \frac{\tilde{N}}{P_D} \right)$, with $\tilde{N} = \prod_{d=1}^{D} P_d > N^D$

- Works because $\mathbb{Z}_{\tilde{N}}$ is homomorphic to $\mathbb{Z}_{P_1} \times \cdots \times \mathbb{Z}_{P_D}$.
Extending to Many Dimensions

Sample $f^{\text{new}}(x) = f \left(x \cdot \frac{\tilde{N}}{P_1}, \ldots, x \cdot \frac{\tilde{N}}{P_D} \right)$, with $\tilde{N} = \prod_{d=1}^{D} P_d > N^D$.

Works because $\mathbb{Z}_{\tilde{N}}$ is homomorphic to $\mathbb{Z}_{P_1} \times \cdots \times \mathbb{Z}_{P_D}$.
Proof Overview

1. Develop good binary measurement matrices, $\mathcal{M} \in \{0, 1\}^{m \times N}$, with both analytic and combinatorial structure.

2. Develop fast recovery methods for $f : [0, 2\pi] \mapsto \mathbb{C}$ by utilizing the combinatorial structure of \mathcal{M}.

3. Map $f : [0, 2\pi]^D \mapsto \mathbb{C}$ to a one dimensional function ✓
Incoherent Discrete Matrices

Discrete Incoherence

Let $K, \alpha \in [1, N] \cap \mathbb{N}$. Call an $m \times N$ boolean matrix, $\mathcal{M} \in \{0, 1\}^{m \times N}$, (K, α)-coherent if both of the following hold:

1. Every column of \mathcal{M} contains at least K nonzero entries.
2. For all $j, l \in [0, N)$ with $j \neq l$, the associated columns, $\mathcal{M}_{., j}$ and $\mathcal{M}_{., l} \in \{0, 1\}^m$, have $\langle \mathcal{M}_{., j}, \mathcal{M}_{., l} \rangle \leq \alpha$.

A (K, α)-coherent matrix also is...

- RIP (i.e., preserves k-sparse $\vec{x} \in \mathbb{C}^N$ with $\delta_k = (k - 1)\alpha/K$)
- The adjacency matrix of a $(k, K, (k - 1)\alpha/2K)$-unbalanced expander graph $\iff l^1$-RIP
- k-strongly selective \iff k-disjunct, and k-majority selective
Incoherent Discrete Matrices

Discrete Incoherence

Let $K, \alpha \in [1, N] \cap \mathbb{N}$. Call an $m \times N$ boolean matrix, $\mathcal{M} \in \{0, 1\}^{m \times N}$, (K, α)-coherent if both of the following hold:

1. Every column of \mathcal{M} contains at least K nonzero entries.
2. For all $j, l \in [0, N)$ with $j \neq l$, the associated columns, $\mathcal{M}_{\cdot j}$ and $\mathcal{M}_{\cdot l} \in \{0, 1\}^m$, have $\langle \mathcal{M}_{\cdot j}, \mathcal{M}_{\cdot l} \rangle \leq \alpha$.

A (K, α)-coherent matrix also is...

- RIP (i.e., preserves k-sparse $\vec{x} \in \mathbb{C}^N$ with $\delta_k = (k - 1)\alpha/K$)
- The adjacency matrix of a $(k, K, (k - 1)\alpha/2K)$-unbalanced expander graph $\iff l^1$-RIP
- k-strongly selective $\iff k$-disjunct, and k-majority selective
Incoherent Discrete Matrices

Discrete Incoherence

Let $K, \alpha \in [1, N] \cap \mathbb{N}$. Call an $m \times N$ boolean matrix, $M \in \{0, 1\}^{m \times N}$, (K, α)-coherent if both of the following hold:

1. Every column of M contains at least K nonzero entries.
2. For all $j, l \in [0, N)$ with $j \neq l$, the associated columns, $M_{., j}$ and $M_{., l} \in \{0, 1\}^m$, have $\langle M_{., j}, M_{., l} \rangle \leq \alpha$.

A (K, α)-coherent matrix also is...

- RIP (i.e., preserves k-sparse $\vec{x} \in \mathbb{C}^N$ with $\delta_k = (k - 1)\alpha/K$)
- The adjacency matrix of a $(k, K, (k - 1)\alpha/2K)$-unbalanced expander graph $\iff l^1$-RIP
- k-strongly selective $\iff k$-disjunct, and k-majority selective
Incoherent Discrete Matrices

Discrete Incoherence

Let \(K, \alpha \in [1, N] \cap \mathbb{N} \). Call an \(m \times N \) boolean matrix, \(\mathcal{M} \in \{0, 1\}^{m \times N} \), \((K, \alpha)\)-coherent if both of the following hold:

1. Every column of \(\mathcal{M} \) contains at least \(K \) nonzero entries.
2. For all \(j, l \in [0, N) \) with \(j \neq l \), the associated columns, \(\mathcal{M} \cdot j \) and \(\mathcal{M} \cdot l \), in \(\{0, 1\}^m \), have \(\langle \mathcal{M} \cdot j, \mathcal{M} \cdot l \rangle \leq \alpha \).

A \((K, \alpha)\)-coherent matrix also is...

- RIP (i.e., preserves \(k \)-sparse \(\tilde{x} \in \mathbb{C}^N \) with \(\delta_k = (k - 1)\alpha/K \))
- The adjacency matrix of a \((k, K, (k - 1)\alpha/2K)\)-unbalanced expander graph \(\iff l^1\)-RIP
- \(k \)-strongly selective \(\iff \) \(k \)-disjunct, and \(k \)-majority selective
Incoherent Discrete Matrices

Discrete Incoherence

Let $K, \alpha \in [1, N] \cap \mathbb{N}$. Call an $m \times N$ boolean matrix, $\mathcal{M} \in \{0, 1\}^{m \times N}$, (K, α)-coherent if both of the following hold:

1. Every column of \mathcal{M} contains at least K nonzero entries.
2. For all $j, l \in [0, N)$ with $j \neq l$, the associated columns, $\mathcal{M}_{..j}$ and $\mathcal{M}_{..l} \in \{0, 1\}^m$, have $\langle \mathcal{M}_{..j}, \mathcal{M}_{..l} \rangle \leq \alpha$.

A (K, α)-coherent matrix also is...

- RIP (i.e., preserves k-sparse $\mathbf{x} \in \mathbb{C}^N$ with $\delta_k = (k - 1)\alpha/K$)
- The adjacency matrix of a $(k, K, (k - 1)\alpha/2K)$-unbalanced expander graph $\iff l^1$-RIP
- k-strongly selective $\iff k$-disjunct, and k-majority selective
Theorem

Let \(n, k \in [0, N) \cap \mathbb{N}, \epsilon^{-1} \in \mathbb{N}^+, \) and \(\tilde{x} \in \mathbb{C}^N. \) Suppose \(M \in \{0, 1\}^{m \times N} \) is a \((K, \alpha)\)-coherent matrix. Then, more than half of the at least \(K \) rows of \(M \) with nonzero entries in \(M \cdot n \) will produce an entry in \(M \tilde{x} \in \mathbb{C}^m \) that estimates \(\tilde{x}_n \) to within \(\frac{\epsilon \cdot \| \tilde{x} - \tilde{x}_{\text{opt}}(k/\epsilon) \|_1}{k} \) precision.

- The median of the entries of \(M \tilde{x} \in \mathbb{C}^m \) produced by rows with 1 in \(M \cdot n \) will have stated the accuracy.
- The structure of the measurement matrix allows standard fast recovery techniques to be employed.
Theorem

Let $n, k \in [0, N) \cap \mathbb{N}$, $\epsilon^{-1} \in \mathbb{N}^+$, and $\vec{x} \in \mathbb{C}^N$. Suppose $M \in \{0, 1\}^{m \times N}$ is a (K, α)-coherent matrix. Then, more than half of the at least K rows of M with nonzero entries in $M_{:, n}$ will produce an entry in $M\vec{x} \in \mathbb{C}^m$ that estimates \vec{x}_n to within $\epsilon \cdot \left\| \vec{x} - \vec{x}_{(k/\epsilon)}^{\text{opt}} \right\|_1$ precision.

- The median of the entries of $M\vec{x} \in \mathbb{C}^m$ produced by rows with 1 in $M_{:, n}$ will have stated the accuracy.

- The structure of the measurement matrix allows standard fast recovery techniques to be employed.
Proof Elements

Incoherent Discrete Matrices

Theorem

Let $n, k \in [0, N) \cap \mathbb{N}$, $\epsilon^{-1} \in \mathbb{N}^+$, and $\vec{x} \in \mathbb{C}^N$. Suppose $\mathcal{M} \in \{0, 1\}^{m \times N}$ is a (K, α)-coherent matrix. Then, more than half of the at least K rows of \mathcal{M} with nonzero entries in $\mathcal{M}_\cdot \vec{x}$ will produce an entry in $\mathcal{M} \vec{x} \in \mathbb{C}^m$ that estimates \vec{x}_n to within $\frac{\epsilon \cdot \|\vec{x} - \vec{x}_{\text{opt}}^{(k/\epsilon)}\|_1}{k}$ precision.

- The median of the entries of $\mathcal{M} \vec{x} \in \mathbb{C}^m$ produced by rows with 1 in $\mathcal{M}_\cdot \vec{x}$ will have stated the accuracy.
- The structure of the measurement matrix allows standard fast recovery techniques to be employed.
Examples of Incoherent Discrete Matrices

Incoherent Discrete Matrices Include...

- Random Bernoulli Matrices
- Algebraic Constructions (e.g., DeVore’s deterministic RIP matrix)
- Number Theoretic
Examples of Incoherent Discrete Matrices

Incoherent Discrete Matrices Include...

- Random Bernoulli Matrices
- Algebraic Constructions (e.g., DeVore’s deterministic RIP matrix)
- Number Theoretic
Examples of Incoherent Discrete Matrices

Incoherent Discrete Matrices Include...

- Random Bernoulli Matrices
- Algebraic Constructions (e.g., DeVore’s deterministic RIP matrix)
- Number Theoretic
Examples of Incoherent Discrete Matrices

Incoherent Discrete Matrices Include...

- Random Bernoulli Matrices
- Algebraic Constructions (e.g., DeVore’s deterministic RIP matrix)
- Number Theoretic
Number Theoretic Constructions

\[\begin{array}{cccccc}
\mathbf{n} & \in & [0, N) & 0 & 1 & 2 \\
\mathbf{n} \equiv 0 \mod 2 & & (1 & 0 & 1 & 0 & 1 & \ldots) \\
\mathbf{n} \equiv 1 \mod 2 & & 0 & 1 & 0 & 1 & 0 & \ldots \\
\mathbf{n} \equiv 0 \mod 3 & & 1 & 0 & 0 & 1 & 0 & \ldots \\
\mathbf{n} \equiv 1 \mod 3 & & 0 & 1 & 0 & 0 & 1 & \ldots \\
\mathbf{n} \equiv 2 \mod 3 & & 0 & 0 & 1 & 0 & 0 & \ldots \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
\mathbf{n} \equiv 1 \mod 5 & & 0 & 1 & 0 & 0 & 0 & 1 & \ldots \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
\end{array} \]

- Let \(p_l \) by the \(l \)th prime number, and \(p_{q-1} \leq k \leq p_q \)
- \(K \) primes larger than \(q \) produce \((K, \lfloor \log_{p_q} N \rfloor)\)-coherent matrix
- Product with Discrete Fourier Transform Matrix is very sparse
- Number of rows of \(\mathcal{M} = \text{Rows of } \mathcal{M} \mathcal{F} \) with nonzero entries =

\[
\sum_{j=0}^{K-1} p_{q+j} \leq \frac{7k^2 \cdot \lfloor \log_k N \rfloor^2}{\epsilon^2} \ln \left(\frac{3.05 \cdot k \cdot \lfloor \log_k N \rfloor}{\epsilon} \right)
\]
Let p_l by the l^{th} prime number, and $p_{q-1} \leq k \leq p_q$

- K primes larger than q produce $(K, \lceil \log_{p_q} N \rceil)$-coherent matrix
- Product with Discrete Fourier Transform Matrix is very sparse
- Number of rows of $\mathcal{M} = \text{Rows of } \mathcal{M} \mathcal{F}$ with nonzero entries =

$$\sum_{j=0}^{K-1} p_{q+j} \leq \frac{7k^2 \cdot \lceil \log_k N \rceil^2}{\epsilon^2} \ln \left(\frac{3.05 \cdot k \cdot \lceil \log_k N \rceil}{\epsilon} \right)$$
Number Theoretic Constructions

Let \(p_i \) by the \(i \)th prime number, and \(p_{q-1} \leq k \leq p_q \)

- \(K \) primes larger than \(q \) produce \((K, \lfloor \log_{pq} N \rfloor)\)-coherent matrix
- Product with Discrete Fourier Transform Matrix is very sparse
- Number of rows of \(\mathcal{M} = \text{Rows of } \mathcal{M} \mathcal{F} \) with nonzero entries =

\[
\sum_{j=0}^{K-1} p_{q+j} \leq \frac{7k^2 \cdot \lfloor \log_k N \rfloor^2}{\epsilon^2} \ln \left(\frac{3.05 \cdot k \cdot \lfloor \log_k N \rfloor}{\epsilon} \right)
\]
Number Theoretic Constructions

Proof Elements

<table>
<thead>
<tr>
<th>n ∈ [0, N)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>n ≡ 0 mod 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>n ≡ 1 mod 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>n ≡ 0 mod 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>n ≡ 1 mod 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>n ≡ 2 mod 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>n ≡ 1 mod 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

- Let p_l by the l^{th} prime number, and $p_{q-1} \leq k \leq p_q$
- K primes larger than q produce $(K, \lceil \log_{pq} N \rceil)$-coherent matrix
- Product with Discrete Fourier Transform Matrix is very sparse
- Number of rows of $\mathcal{M} = \text{Rows of } \mathcal{M} \mathcal{F}$ with nonzero entries =

$$
\sum_{j=0}^{K-1} p_{q+j} \leq \frac{7k^2 \cdot \lceil \log_k N \rceil^2}{\epsilon^2} \ln \left(\frac{3.05 \cdot k \cdot \lceil \log_k N \rceil}{\epsilon} \right)
$$
Proof Overview

1. Develop good binary measurement matrices, \(M \in \{0, 1\}^{m \times N} \), with both analytic and combinatorial structure ✓

2. Develop fast recovery methods for \(f : [0, 2\pi] \mapsto \mathbb{C} \) by utilizing the combinatorial structure of \(M \)

3. Map \(f : [0, 2\pi]^D \mapsto \mathbb{C} \) to a one dimensional function ✓
Example: Finding One Nonzero Entry

- M is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{align*}
\equiv 0 \mod 2 & \quad \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
\equiv 1 \mod 2 & \quad \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\
\equiv 0 \mod 3 & \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\
\equiv 1 \mod 3 & \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \\
\equiv 2 \mod 3 & \quad \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry’s value

SAVED ONE TEST!
Example: Finding One Nonzero Entry

- M is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{align*}
\equiv 0 \mod 2 & \quad \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \\
\equiv 1 \mod 2 & \quad \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\
\equiv 0 \mod 3 & \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\
\equiv 1 \mod 3 & \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \\
\equiv 2 \mod 3 & \quad \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry’s value

SAVED ONE TEST!
Example: Finding One Nonzero Entry

- M is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\Leftarrow \text{Index } \equiv 0 \text{ mod } 2
\]
\[
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
\end{pmatrix}
\Leftarrow \text{Index } \equiv 2 \text{ mod } 3
\]

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

SAVED ONE TEST!
Example: Finding One Nonzero Entry

- M is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{pmatrix}
\quad \Leftarrow \quad \text{Index } \equiv 0 \mod 2
\]

\[
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0
\end{pmatrix}
\quad \Leftarrow \quad \text{Index } \equiv 2 \mod 3
\]

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry’s value

SAVED ONE TEST!
Example: Finding One Nonzero Entry

- \mathcal{M} is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{pmatrix}
\quad \Leftarrow \quad \text{Index } \equiv 0 \text{ mod } 2
\]

\[
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0
\end{pmatrix}
\quad \Leftarrow \quad \text{Index } \equiv 2 \text{ mod } 3
\]

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry’s value
Example: Finding One Nonzero Entry

- M is 5×6, \vec{x} contains 1 nonzero entry.

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{pmatrix}
\iff \text{Index } \equiv 0 \mod 2
\]

- Index $\equiv 2 \mod 3$

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry’s value

SAVED ONE TEST!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\cdot \mathcal{F}_{6\times6}^{-1}
\cdot
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
3.5
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\mathcal{F}_{6 \times 6}
\begin{pmatrix}
0 \\
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
3.5
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{\frac{3}{2}} & 0 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
\sqrt{\frac{3}{2}} & 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
\end{pmatrix} \cdot \begin{pmatrix}
F_{6 \times 6}^{-1}
\end{pmatrix}
\begin{pmatrix}
0 \\
3.5 \\
0 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
= \begin{pmatrix}
3.5 \\
0 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{\frac{3}{2}} & 0 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
\sqrt{\frac{3}{2}} & 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathcal{F}_{6 \times 6}^{-1} \\
\begin{pmatrix}
0 \\
0 \\
3.5 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\end{pmatrix}
= \begin{pmatrix}
3.5 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{3} \cdot \psi_{2 \times 2} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \\
\sqrt{2} \cdot \psi_{3 \times 3} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathcal{F}^{-1}_{6 \times 6} \begin{pmatrix} 0 & 0 \\
0 & 3.5 \\
0 & 0 \\
3.5 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\end{pmatrix}
= \begin{pmatrix} 3.5 \\
0 \\
0 \\
0 \\
3.5
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{3} \cdot \psi_{2 \times 2} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix} \\
\sqrt{2} \cdot \psi_{3 \times 3} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3.5 \\
\end{pmatrix} \\
\end{pmatrix} \cdot \begin{pmatrix}
\mathcal{F}_{6 \times 6}^{-1} \\
\begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\
\end{pmatrix} \\
\end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 3.5 \\
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{3} \cdot \psi_{2 \times 2} \cdot \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}

& \begin{pmatrix}
\sqrt{2} \cdot \psi_{3 \times 3} \cdot \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}

\end{pmatrix} \cdot \begin{pmatrix}
\mathcal{F}^{-1}_{6 \times 6} \\
0 \\
3.5 \\
0 \\
0 \\
3.5
\end{pmatrix} = \begin{pmatrix}
3.5 \\
0 \\
0 \\
3.5
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient
Example: Finding One Nonzero Fourier Coefficient

\[
\begin{pmatrix}
\sqrt{3} \cdot \psi_{2 \times 2} \cdot \\
\sqrt{2} \cdot \psi_{3 \times 3} \cdot \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\mathcal{F}_{6 \times 6}^{-1} \\
\end{pmatrix}
\begin{pmatrix}
0 \\
3.5 \\
0 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
=
\begin{pmatrix}
3.5 \\
0 \\
0 \\
3.5 \\
\end{pmatrix}
\]

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
Proof Overview

1. Develop good binary measurement matrices, $\mathcal{M} \in \{0, 1\}^{m \times N}$, with both analytic and combinatorial structure ✓

2. Develop fast recovery methods for $f : [0, 2\pi] \mapsto \mathbb{C}$ by utilizing the combinatorial structure of \mathcal{M} ✓

3. Map $f : [0, 2\pi]^D \mapsto \mathbb{C}$ to a one dimensional function ✓
Recovery results hold more generally (not just in the Fourier case)
 • Related expansions (e.g., Chebyshev by a change of variable to Fourier)
 • For arbitrary dictionaries if 'function evaluations’ replaced by 'linear measurements’

Nonuniform recovery results can be obtained using structured random matrices produced by randomly sampling \((K, \alpha)\)-coherent matrix rows

For number theoretic constructions analytic number theory provides nice results and tools for explicitly bounding required samples, etc.
Conclusion

- Recovery results hold more generally (not just in the Fourier case)
 - Related expansions (e.g., Chebyshev by a change of variable to Fourier)
 - For arbitrary dictionaries if ‘function evaluations’ replaced by ‘linear measurements’

- Nonuniform recovery results can be obtained using structured random matrices produced by randomly sampling \((K, \alpha)\)-coherent matrix rows

- For number theoretic constructions analytic number theory provides nice results and tools for explicitly bounding required samples, etc.
Recovery results hold more generally (not just in the Fourier case)
 • Related expansions (e.g., Chebyshev by a change of variable to Fourier)
 • For arbitrary dictionaries if ‘function evaluations’ replaced by ‘linear measurements’

Nonuniform recovery results can be obtained using structured random matrices produced by randomly sampling \((K, \alpha)\)-coherent matrix rows

For number theoretic constructions analytic number theory provides nice results and tools for explicitly bounding required samples, etc.
Questions?

Thank You!