Referenzen
84. |
Higher regularity for the fractional thin obstacle problem
New York J. Math.,
25:745--838
2019
|
83. |
Conserved energies for the cubic nonlinear Schrödinger equation in one dimension
Duke Math. J.,
167(17):3207--3313
2018
|
82. |
Flatness implies smoothness for solutions of the porous medium equation
Calc. Var. Partial Differential Equations,
57(1):Art. 18, 42
2018
|
81. |
Renormalization of the two-dimensional stochastic nonlinear wave equations
Trans. Amer. Math. Soc.,
370(10):7335--7359
2018
DOI: 10.1090/tran/7452
|
80. |
Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili II equation
Comm. Partial Differential Equations,
42(6):950--976
2017
|
79. |
The variable coefficient thin obstacle problem: higher regularity
Adv. Differential Equations,
22(11-12):793--866
2017
|
78. |
The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary
Ann. Inst. H. Poincaré Anal. Non Linéaire,
34(4):845--897
2017
|
77. |
The cubic Szegő flow at low regularity
Séminaire Laurent Schwartz---�quations aux dérivées partielles et applications. Année 2016--2017
Seite Exp. No. XIV, 14.
Herausgeber: Ed. Ã?c. Polytech., Palaiseau,
2017
|
76. |
Conserved energies for cubic NLS in 1-d
arXiv,
1607.02534
2016
|
75. |
Doubling inequalities for the Lamé system with rough coefficients
Proc. Amer. Math. Soc.,
144(12):5309--5318
2016
DOI: 10.1090/proc/13175
|
74. |
Flatness implies smoothness for solutions of the porous medium equation
arXiv,
1609.09048
2016
|
73. |
The variable coefficient thin obstacle problem: Carleman inequalities
Adv. Math.,
301:820--866
2016
|