Referenzen
95. |
Material optimization for nonlinearly elastic planar beams
ESAIM Control Optim. Calc. Var.,
25:Art. 11, 19
2019
DOI: 10.1051/cocv/2017081
|
94. |
Simultaneous elastic shape optimization for a domain splitting in bone tissue engineering
Proc. A.,
475(2227):20180718, 17
2019
|
93. |
Variational time discretization of Riemannian splines
IMA J. Numer. Anal.,
39(1):61--104
2019
|
92. |
A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
ESAIM Math. Model. Numer. Anal.,
52(4):1457--1476
2018
DOI: 10.1051/m2an/2017004
|
91. |
Image extrapolation for the time discrete metamorphosis model: existence and applications
SIAM J. Imaging Sci.,
11(1):834--862
2018
DOI: 10.1137/17M1129544
|
90. |
Shape-aware matching of implicit surfaces based on thin shell energies
Found. Comput. Math.,
18(4):891--927
2018
|
89. |
Stochastic dominance constraints in elastic shape optimization
SIAM J. Control Optim.,
56(4):3021--3034
2018
DOI: 10.1137/16M108313X
|
88. |
Branching structures in elastic shape optimization
Shape optimization, homogenization and optimal control Band 169
aus Internat. Ser. Numer. Math.
Seite 213--225.
Herausgeber: Birkhäuser/Springer, Cham,
2018
|
87. |
Homogenization in magnetic-shape-memory polymer composites
Shape optimization, homogenization and optimal control Band 169
aus Internat. Ser. Numer. Math.
Seite 1--17.
Herausgeber: Birkhäuser/Springer, Cham,
2018
|
86. |
A posteriori error control for the binary Mumford-Shah model
Math. Comp.,
86(306):1769--1791
2017
DOI: 10.1090/mcom/3138
|
85. |
Smooth interpolation of key frames in a Riemannian shell space
Comput. Aided Geom. Design,
52/53:313--328
2017
|
84. |
A posteriori error estimates for sequential laminates in shape optimization
Discrete Contin. Dyn. Syst. Ser. S,
9(5):1377--1392
2016
|