Referenzen
31. |
Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup
J. Eur. Math. Soc. (JEMS),
14(2):373--419
2012
DOI: 10.4171/JEMS/306
|
30. |
On the Ext algebras of parabolic Verma modules and Aâ??-structures
J. Pure Appl. Algebra,
216(2):323--336
2012
|
29. |
Schur-Weyl-type duality for quantized {\germgl(1|1)}, the Burau representation of braid groups, and invariants of tangled graphs
Perspectives in analysis, geometry, and topology Band 296
aus Progr. Math.
Seite 389--401.
Herausgeber: Birkhäuser/Springer, New York,
2012
|
28. |
Blocks of the category of cuspidal {\germsp2n}-modules
Pacific J. Math.,
251(1):183--196
2011
|
27. |
Cuspidal {\germsl_n}-modules and deformations of certain Brauer tree algebras
Adv. Math.,
228(2):1008--1042
2011
|
26. |
Highest weight categories arising from Khovanov's diagram algebra I: cellularity
Mosc. Math. J.,
11(4):685--722, 821--822
2011
|
25. |
Highest weight categories arising from Khovanov's diagram algebra III: category <scr>O</scr>
Represent. Theory,
15:170--243
2011
|
24. |
Highest weight categories arising from Khovanov's diagram algebra. II. Koszulity
Transform. Groups,
15(1):1--45
2010
|
23. |
The {\widehat{\germsl}(n)_k}-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology
Adv. Math.,
225(1):200--268
2010
|
22. |
Schur-Weyl dualities and link homologies
Proceedings of the International Congress of Mathematicians. Volume III
, Seite 1344--1365.
Herausgeber: Hindustan Book Agency, New Delhi,
2010
|
21. |
A brief review of abelian categorifications
Theory Appl. Categ.,
22:No. 19, 479--508
2009
|
20. |
A combinatorial approach to functorial quantum {\germsl_k} knot invariants
Amer. J. Math.,
131(6):1679--1713
2009
DOI: 10.1353/ajm.0.0082
|