Hausdorff School: “The Circle Method”

Online Hausdorff school on "The Circle Method: Entering its Second Century"

Dates: May 10 - 14 and May 17-21 (2 weeks) 2021

Organizers: Lillian Pierce (Duke University), Oscar Marmon (University of Lund)

The Circle Method emerged one hundred years ago from ideas of Ramanujan, Hardy and Littlewood, and quickly became the most powerful analytic method for counting solutions to Diophantine equations. As the Circle Method enters its second century, new work is making significant advances both in strengthening results in classical Diophantine settings, and in demonstrating applications in novel settings. This includes function field, number field, adelic, geometric, and harmonic analytic applications, with striking consequences in areas such as ergodic theory, subconvexity for $L$-functions, and the Langlands program.

This summer school for graduate students and postdocs will present accessible lecture series that demonstrate how to apply the Circle Method in a wide variety of settings. Participants will gain both a foundational understanding of the core principles of the Circle Method, and an overview of cutting-edge applications of the method.

Key Speakers: The following speakers will give a lecture series:

  •  Timothy Browning (IST Austria)
  •  Jayce Getz (Duke University)
  •  Yu-Ru Liu (University of Waterloo)
  •  Ritabrata Munshi (Tata Institute)
  •  Simon Myerson (Universität Göttingen)
  •  Lillian Pierce (Duke University)  

Additional Speakers:

  • Julia Brandes (University of Gothenburg)
  • Damaris Schindler (University of Utrecht)
  • Pankaj Vishe (Durham University) 

This summer school will take place online. Anyone who was accepted when the program was planned for 2020, will automatically be given access to the online activities. In spring 2021 it will also be possible to register online to participate online in the summer school.

In case of questions, please contact the organizers at thecirclemethod(at)