This file was created by the Typo3 extension sevenpack version 0.7.10 --- Timezone: UTC Creation date: 2021-03-08 Creation time: 08-32-20 --- Number of references 43 article MR3949128 $C^{1, \alpha}$ isometric extensions Comm. Partial Differential Equations 2019 44 7 613--636 https://doi.org/10.1080/03605302.2019.1581806 10.1080/03605302.2019.1581806 WentaoCao Jr., LászlóSzékelyhidi article MR3929468 On turbulence and geometry: from Nash to Onsager Notices Amer. Math. Soc. 2019 66 5 677--685 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3896021 Onsager's conjecture for admissible weak solutions Comm. Pure Appl. Math. 2019 72 2 229--274 https://doi.org/10.1002/cpa.21781 10.1002/cpa.21781 TristanBuckmaster CamilloDe Lellis Jr., LászlóSzékelyhidi VladVicol article MR3951880 Very weak solutions to the two-dimensional Monge-Ampére equation Sci. China Math. 2019 62 6 1041--1056 https://doi.org/10.1007/s11425-018-9516-7 10.1007/s11425-018-9516-7 WentaoCao Jr., LászlóSzékelyhidi article MR3850282 A Nash-Kuiper theorem for $C^{1, \frac{1}{\delta}- \delta}$ immersions of surfaces in 3 dimensions Rev. Mat. Iberoam. 2018 34 3 1119--1152 https://doi.org/10.4171/RMI/1019 10.4171/RMI/1019 CamilloDe Lellis DominikInauen Jr., LászlóSzékelyhidi article MR3884855 Non-uniqueness for the transport equation with Sobolev vector fields Ann. PDE 2018 4 2 Art. 18, 38 https://doi.org/10.1007/s40818-018-0056-x 10.1007/s40818-018-0056-x StefanoModena Jr., LászlóSzékelyhidi article MR3858828 Piecewise constant subsolutions for the Muskat problem Comm. Math. Phys. 2018 363 3 1051--1080 https://doi.org/10.1007/s00220-018-3245-2 10.1007/s00220-018-3245-2 ClemensFörster Jr., LászlóSzékelyhidi article MR3740399 T<sub>5</sub>-configurations and non-rigid sets of matrices Calc. Var. Partial Differential Equations 2018 57 1 Art. 19, 12 https://doi.org/10.1007/s00526-017-1293-7 10.1007/s00526-017-1293-7 ClemensFörster Jr., LászlóSzékelyhidi article MR3619726 High dimensionality and h-principle in PDE Bull. Amer. Math. Soc. (N.S.) 2017 54 2 247--282 https://doi.org/10.1090/bull/1549 10.1090/bull/1549 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3711071 Laminates supported on cubes J. Convex Anal. 2017 24 4 1217--1237 GabriellaSebestyén Jr., LászlóSzékelyhidi article MR3614753 Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations Arch. Ration. Mech. Anal. 2017 224 2 471--514 https://doi.org/10.1007/s00205-017-1081-8 10.1007/s00205-017-1081-8 SaraDaneri Jr., LászlóSzékelyhidi article MR3530360 Dissipative Euler flows with Onsager-critical spatial regularity Comm. Pure Appl. Math. 2016 69 9 1613--1670 https://doi.org/10.1002/cpa.21586 10.1002/cpa.21586 TristanBuckmaster CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3374958 Anomalous dissipation for 1/5-Hölder Euler flows Ann. of Math. (2) 2015 182 1 127--172 https://doi.org/10.4007/annals.2015.182.1.3 10.4007/annals.2015.182.1.3 TristanBuckmaster CamilloDe Lellis PhilipIsett LászlóSzékelyhidi article MR3433279 Equidimensional isometric maps Comment. Math. Helv. 2015 90 4 761--798 https://doi.org/10.4171/CMH/370 10.4171/CMH/370 BerndKirchheim EmanueleSpadaro Jr., LászlóSzékelyhidi article MR3330471 On h-principle and Onsager's conjecture Eur. Math. Soc. Newsl. 2015 95 19--24 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3254331 Dissipative Euler flows and Onsager's conjecture J. Eur. Math. Soc. (JEMS) 2014 16 7 1467--1505 https://doi.org/10.4171/JEMS/466 10.4171/JEMS/466 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3505175 Weak solutions to the stationary incompressible Euler equations SIAM J. Math. Anal. 2014 46 6 4060--4074 https://doi.org/10.1137/140957354 10.1137/140957354 A.Choffrut Jr., L.Székelyhidi inproceedings MR3729039 The h-principle and turbulence 2014 503--524 Kyung Moon Sa, Seoul Proceedings of the International Congress of Mathematicians---Seoul 2014. Vol. III Jr., LászlóSzékelyhidi article MR3090182 Dissipative continuous Euler flows Invent. Math. 2013 193 2 377--407 https://doi.org/10.1007/s00222-012-0429-9 10.1007/s00222-012-0429-9 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR3115829 Laminates meet Burkholder functions J. Math. Pures Appl. (9) 2013 100 5 687--700 https://doi.org/10.1016/j.matpur.2013.01.017 10.1016/j.matpur.2013.01.017 NicholasBoros Jr., LászlóSzékelyhidi AlexanderVolberg incollection MR3469113 Continuous dissipative Euler flows and a conjecture of Onsager 2013 13--29 Eur. Math. Soc., Zürich European Congress of Mathematics CamilloDe Lellis Jr., LászlóSzékelyhidi incollection MR3340997 From isometric embeddings to turbulence 2013 7 63 Am. Inst. Math. Sci. (AIMS), Springfield, MO AIMS Ser. Appl. Math. HCDTE lecture notes. Part II. Nonlinear hyperbolic PDEs, dispersive and transport equations Jr., LászlóSzékelyhidi article MR2986199 Global solutions of the 2D Euler equations, starting with the work of Witold Wolibner Wiad. Mat. 2012 48 2 257--269 https://doi.org/10.14708/wm.v48i2.336 10.14708/wm.v48i2.336 Jr., LászlóSzékelyhidi article MR3014484 Relaxation of the incompressible porous media equation Ann. Sci. Ec. Norm. Supér. (4) 2012 45 3 491--509 https://doi.org/10.24033/asens.2171 10.24033/asens.2171 Jr., LászlóSzékelyhidi article MR2917063 The h-principle and the equations of fluid dynamics Bull. Amer. Math. Soc. (N.S.) 2012 49 3 347--375 https://doi.org/10.1090/S0273-0979-2012-01376-9 10.1090/S0273-0979-2012-01376-9 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2975377 Uniqueness of normalized homeomorphic solutions to nonlinear Beltrami equations Int. Math. Res. Not. IMRN 2012 18 4101--4119 https://doi.org/10.1093/imrn/rnr178 10.1093/imrn/rnr178 KariAstala AlbertClop DanielFaraco JarmoJääskeläinen Jr., LászlóSzékelyhidi article MR2968597 Young measures generated by ideal incompressible fluid flows Arch. Ration. Mech. Anal. 2012 206 1 333--366 https://doi.org/10.1007/s00205-012-0540-5 10.1007/s00205-012-0540-5 LászlóSzékelyhidi EmilWiedemann incollection MR3289360 h-principle and rigidity for $C^{1, \alpha}$ isometric embeddings 2012 7 83--116 https://doi.org/10.1007/978-3-642-25361-4_5 Springer, Heidelberg Abel Symp. Nonlinear partial differential equations 10.1007/978-3-642-25361-4_5 SergioConti CamilloDe Lellis Jr., LászlóSzékelyhidi incollection MR3289360 h-principle and rigidity for $C^{1, \alpha}$ isometric embeddings 2012 7 83--116 https://doi.org/10.1007/978-3-642-25361-4_5 Springer, Heidelberg Abel Symp. Nonlinear partial differential equations 10.1007/978-3-642-25361-4_5 SergioConti CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2842999 Weak solutions to the incompressible Euler equations with vortex sheet initial data C. R. Math. Acad. Sci. Paris 2011 349 19-20 1063--1066 https://doi.org/10.1016/j.crma.2011.09.009 10.1016/j.crma.2011.09.009 Jr., LászlóSzékelyhidi article MR2805464 Weak-strong uniqueness for measure-valued solutions Comm. Math. Phys. 2011 305 2 351--361 https://doi.org/10.1007/s00220-011-1267-0 10.1007/s00220-011-1267-0 YannBrenier CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2564474 On admissibility criteria for weak solutions of the Euler equations Arch. Ration. Mech. Anal. 2010 195 1 225--260 https://doi.org/10.1007/s00205-008-0201-x 10.1007/s00205-008-0201-x CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2600877 The Euler equations as a differential inclusion Ann. of Math. (2) 2009 170 3 1417--1436 https://doi.org/10.4007/annals.2009.170.1417 10.4007/annals.2009.170.1417 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2413671 Convex integration and the L<sup>p</sup> theory of elliptic equations Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2008 7 1 1--50 KariAstala DanielFaraco Jr., LászlóSzékelyhidi article MR2482221 On the gradient set of Lipschitz maps J. Reine Angew. Math. 2008 625 215--229 https://doi.org/10.1515/CRELLE.2008.095 10.1515/CRELLE.2008.095 BerndKirchheim Jr., LászlóSzékelyhidi article MR2413136 Tartar's conjecture and localization of the quasiconvex hull in $\Bbb{R}^{2 \times 2}$ Acta Math. 2008 200 2 279--305 https://doi.org/10.1007/s11511-008-0028-1 10.1007/s11511-008-0028-1 DanielFaraco LászlóSzékelyhidi article MR2293984 Erratum to: "Rank-one convex hulls in $\Bbb{R}^{2 \times 2}" [Calc. Var. Partial Differential Equations <strong>22</strong>(2005), no. 3, 253--281; MR2118899] Calc. Var. Partial Differential Equations 2007 28 4 545--546 https://doi.org/10.1007/s00526-006-0053-x 10.1007/s00526-006-0053-x Jr., LászlóSzékelyhidi incollection MR2316340 Counterexamples to elliptic regularity and convex integration 2007 424 227--245 https://doi.org/10.1090/conm/424/08104 Amer. Math. Soc., Providence, RI Contemp. Math. The interaction of analysis and geometry 10.1090/conm/424/08104 Jr., LászlóSzékelyhidi article MR2271698 On quasiconvex hulls in symmetric $2 \times 2$ matrices Ann. Inst. H. Poincaré Anal. Non Linéaire 2006 23 6 865--876 https://doi.org/10.1016/j.anihpc.2005.11.001 10.1016/j.anihpc.2005.11.001 Jr., LászlóSzékelyhidi article MR2215765 On the local structure of rank-one convex hulls Proc. Amer. Math. Soc. 2006 134 7 1963--1972 https://doi.org/10.1090/S0002-9939-05-08299-7 10.1090/S0002-9939-05-08299-7 Jr., LászlóSzékelyhidi article MR2253059 Simple proof of two-well rigidity C. R. Math. Acad. Sci. Paris 2006 343 5 367--370 https://doi.org/10.1016/j.crma.2006.07.008 10.1016/j.crma.2006.07.008 CamilloDe Lellis Jr., LászlóSzékelyhidi article MR2118899 Rank-one convex hulls in $\Bbb{R}^{2 \times 2}$ Calc. Var. Partial Differential Equations 2005 22 3 253--281 https://doi.org/10.1007/s00526-004-0272-y 10.1007/s00526-004-0272-y Jr., LászlóSzékelyhidi article MR2048569 The regularity of critical points of polyconvex functionals Arch. Ration. Mech. Anal. 2004 172 1 133--152 https://doi.org/10.1007/s00205-003-0300-7 10.1007/s00205-003-0300-7 Jr., LászlóSzékelyhidi