This file was created by the Typo3 extension
sevenpack version 0.7.10
--- Timezone: UTC
Creation date: 2021-03-08
Creation time: 08-32-20
--- Number of references
43
article
MR3949128
$C^{1, \alpha}$ isometric extensions
Comm. Partial Differential Equations
2019
44
7
613--636
https://doi.org/10.1080/03605302.2019.1581806
10.1080/03605302.2019.1581806
WentaoCao
Jr., LászlóSzékelyhidi
article
MR3929468
On turbulence and geometry: from Nash to Onsager
Notices Amer. Math. Soc.
2019
66
5
677--685
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3896021
Onsager's conjecture for admissible weak solutions
Comm. Pure Appl. Math.
2019
72
2
229--274
https://doi.org/10.1002/cpa.21781
10.1002/cpa.21781
TristanBuckmaster
CamilloDe Lellis
Jr., LászlóSzékelyhidi
VladVicol
article
MR3951880
Very weak solutions to the two-dimensional Monge-Ampére equation
Sci. China Math.
2019
62
6
1041--1056
https://doi.org/10.1007/s11425-018-9516-7
10.1007/s11425-018-9516-7
WentaoCao
Jr., LászlóSzékelyhidi
article
MR3850282
A Nash-Kuiper theorem for $C^{1, \frac{1}{\delta}- \delta}$ immersions of surfaces in 3 dimensions
Rev. Mat. Iberoam.
2018
34
3
1119--1152
https://doi.org/10.4171/RMI/1019
10.4171/RMI/1019
CamilloDe Lellis
DominikInauen
Jr., LászlóSzékelyhidi
article
MR3884855
Non-uniqueness for the transport equation with Sobolev vector fields
Ann. PDE
2018
4
2
Art. 18, 38
https://doi.org/10.1007/s40818-018-0056-x
10.1007/s40818-018-0056-x
StefanoModena
Jr., LászlóSzékelyhidi
article
MR3858828
Piecewise constant subsolutions for the Muskat problem
Comm. Math. Phys.
2018
363
3
1051--1080
https://doi.org/10.1007/s00220-018-3245-2
10.1007/s00220-018-3245-2
ClemensFörster
Jr., LászlóSzékelyhidi
article
MR3740399
T<sub>5</sub>-configurations and non-rigid sets of matrices
Calc. Var. Partial Differential Equations
2018
57
1
Art. 19, 12
https://doi.org/10.1007/s00526-017-1293-7
10.1007/s00526-017-1293-7
ClemensFörster
Jr., LászlóSzékelyhidi
article
MR3619726
High dimensionality and h-principle in PDE
Bull. Amer. Math. Soc. (N.S.)
2017
54
2
247--282
https://doi.org/10.1090/bull/1549
10.1090/bull/1549
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3711071
Laminates supported on cubes
J. Convex Anal.
2017
24
4
1217--1237
GabriellaSebestyén
Jr., LászlóSzékelyhidi
article
MR3614753
Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations
Arch. Ration. Mech. Anal.
2017
224
2
471--514
https://doi.org/10.1007/s00205-017-1081-8
10.1007/s00205-017-1081-8
SaraDaneri
Jr., LászlóSzékelyhidi
article
MR3530360
Dissipative Euler flows with Onsager-critical spatial regularity
Comm. Pure Appl. Math.
2016
69
9
1613--1670
https://doi.org/10.1002/cpa.21586
10.1002/cpa.21586
TristanBuckmaster
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3374958
Anomalous dissipation for 1/5-Hölder Euler flows
Ann. of Math. (2)
2015
182
1
127--172
https://doi.org/10.4007/annals.2015.182.1.3
10.4007/annals.2015.182.1.3
TristanBuckmaster
CamilloDe Lellis
PhilipIsett
LászlóSzékelyhidi
article
MR3433279
Equidimensional isometric maps
Comment. Math. Helv.
2015
90
4
761--798
https://doi.org/10.4171/CMH/370
10.4171/CMH/370
BerndKirchheim
EmanueleSpadaro
Jr., LászlóSzékelyhidi
article
MR3330471
On h-principle and Onsager's conjecture
Eur. Math. Soc. Newsl.
2015
95
19--24
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3254331
Dissipative Euler flows and Onsager's conjecture
J. Eur. Math. Soc. (JEMS)
2014
16
7
1467--1505
https://doi.org/10.4171/JEMS/466
10.4171/JEMS/466
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3505175
Weak solutions to the stationary incompressible Euler equations
SIAM J. Math. Anal.
2014
46
6
4060--4074
https://doi.org/10.1137/140957354
10.1137/140957354
A.Choffrut
Jr., L.Székelyhidi
inproceedings
MR3729039
The h-principle and turbulence
2014
503--524
Kyung Moon Sa, Seoul
Proceedings of the International Congress of Mathematicians---Seoul 2014. Vol. III
Jr., LászlóSzékelyhidi
article
MR3090182
Dissipative continuous Euler flows
Invent. Math.
2013
193
2
377--407
https://doi.org/10.1007/s00222-012-0429-9
10.1007/s00222-012-0429-9
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR3115829
Laminates meet Burkholder functions
J. Math. Pures Appl. (9)
2013
100
5
687--700
https://doi.org/10.1016/j.matpur.2013.01.017
10.1016/j.matpur.2013.01.017
NicholasBoros
Jr., LászlóSzékelyhidi
AlexanderVolberg
incollection
MR3469113
Continuous dissipative Euler flows and a conjecture of Onsager
2013
13--29
Eur. Math. Soc., Zürich
European Congress of Mathematics
CamilloDe Lellis
Jr., LászlóSzékelyhidi
incollection
MR3340997
From isometric embeddings to turbulence
2013
7
63
Am. Inst. Math. Sci. (AIMS), Springfield, MO
AIMS Ser. Appl. Math.
HCDTE lecture notes. Part II. Nonlinear hyperbolic PDEs, dispersive and transport equations
Jr., LászlóSzékelyhidi
article
MR2986199
Global solutions of the 2D Euler equations, starting with the work of Witold Wolibner
Wiad. Mat.
2012
48
2
257--269
https://doi.org/10.14708/wm.v48i2.336
10.14708/wm.v48i2.336
Jr., LászlóSzékelyhidi
article
MR3014484
Relaxation of the incompressible porous media equation
Ann. Sci. Ec. Norm. Supér. (4)
2012
45
3
491--509
https://doi.org/10.24033/asens.2171
10.24033/asens.2171
Jr., LászlóSzékelyhidi
article
MR2917063
The h-principle and the equations of fluid dynamics
Bull. Amer. Math. Soc. (N.S.)
2012
49
3
347--375
https://doi.org/10.1090/S0273-0979-2012-01376-9
10.1090/S0273-0979-2012-01376-9
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2975377
Uniqueness of normalized homeomorphic solutions to nonlinear Beltrami equations
Int. Math. Res. Not. IMRN
2012
18
4101--4119
https://doi.org/10.1093/imrn/rnr178
10.1093/imrn/rnr178
KariAstala
AlbertClop
DanielFaraco
JarmoJääskeläinen
Jr., LászlóSzékelyhidi
article
MR2968597
Young measures generated by ideal incompressible fluid flows
Arch. Ration. Mech. Anal.
2012
206
1
333--366
https://doi.org/10.1007/s00205-012-0540-5
10.1007/s00205-012-0540-5
LászlóSzékelyhidi
EmilWiedemann
incollection
MR3289360
h-principle and rigidity for $C^{1, \alpha}$ isometric embeddings
2012
7
83--116
https://doi.org/10.1007/978-3-642-25361-4_5
Springer, Heidelberg
Abel Symp.
Nonlinear partial differential equations
10.1007/978-3-642-25361-4_5
SergioConti
CamilloDe Lellis
Jr., LászlóSzékelyhidi
incollection
MR3289360
h-principle and rigidity for $C^{1, \alpha}$ isometric embeddings
2012
7
83--116
https://doi.org/10.1007/978-3-642-25361-4_5
Springer, Heidelberg
Abel Symp.
Nonlinear partial differential equations
10.1007/978-3-642-25361-4_5
SergioConti
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2842999
Weak solutions to the incompressible Euler equations with vortex sheet initial data
C. R. Math. Acad. Sci. Paris
2011
349
19-20
1063--1066
https://doi.org/10.1016/j.crma.2011.09.009
10.1016/j.crma.2011.09.009
Jr., LászlóSzékelyhidi
article
MR2805464
Weak-strong uniqueness for measure-valued solutions
Comm. Math. Phys.
2011
305
2
351--361
https://doi.org/10.1007/s00220-011-1267-0
10.1007/s00220-011-1267-0
YannBrenier
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2564474
On admissibility criteria for weak solutions of the Euler equations
Arch. Ration. Mech. Anal.
2010
195
1
225--260
https://doi.org/10.1007/s00205-008-0201-x
10.1007/s00205-008-0201-x
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2600877
The Euler equations as a differential inclusion
Ann. of Math. (2)
2009
170
3
1417--1436
https://doi.org/10.4007/annals.2009.170.1417
10.4007/annals.2009.170.1417
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2413671
Convex integration and the L<sup>p</sup> theory of elliptic equations
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
2008
7
1
1--50
KariAstala
DanielFaraco
Jr., LászlóSzékelyhidi
article
MR2482221
On the gradient set of Lipschitz maps
J. Reine Angew. Math.
2008
625
215--229
https://doi.org/10.1515/CRELLE.2008.095
10.1515/CRELLE.2008.095
BerndKirchheim
Jr., LászlóSzékelyhidi
article
MR2413136
Tartar's conjecture and localization of the quasiconvex hull in $\Bbb{R}^{2 \times 2}$
Acta Math.
2008
200
2
279--305
https://doi.org/10.1007/s11511-008-0028-1
10.1007/s11511-008-0028-1
DanielFaraco
LászlóSzékelyhidi
article
MR2293984
Erratum to: "Rank-one convex hulls in $\Bbb{R}^{2 \times 2}" [Calc. Var. Partial Differential Equations <strong>22</strong>(2005), no. 3, 253--281; MR2118899]
Calc. Var. Partial Differential Equations
2007
28
4
545--546
https://doi.org/10.1007/s00526-006-0053-x
10.1007/s00526-006-0053-x
Jr., LászlóSzékelyhidi
incollection
MR2316340
Counterexamples to elliptic regularity and convex integration
2007
424
227--245
https://doi.org/10.1090/conm/424/08104
Amer. Math. Soc., Providence, RI
Contemp. Math.
The interaction of analysis and geometry
10.1090/conm/424/08104
Jr., LászlóSzékelyhidi
article
MR2271698
On quasiconvex hulls in symmetric $2 \times 2$ matrices
Ann. Inst. H. Poincaré Anal. Non Linéaire
2006
23
6
865--876
https://doi.org/10.1016/j.anihpc.2005.11.001
10.1016/j.anihpc.2005.11.001
Jr., LászlóSzékelyhidi
article
MR2215765
On the local structure of rank-one convex hulls
Proc. Amer. Math. Soc.
2006
134
7
1963--1972
https://doi.org/10.1090/S0002-9939-05-08299-7
10.1090/S0002-9939-05-08299-7
Jr., LászlóSzékelyhidi
article
MR2253059
Simple proof of two-well rigidity
C. R. Math. Acad. Sci. Paris
2006
343
5
367--370
https://doi.org/10.1016/j.crma.2006.07.008
10.1016/j.crma.2006.07.008
CamilloDe Lellis
Jr., LászlóSzékelyhidi
article
MR2118899
Rank-one convex hulls in $\Bbb{R}^{2 \times 2}$
Calc. Var. Partial Differential Equations
2005
22
3
253--281
https://doi.org/10.1007/s00526-004-0272-y
10.1007/s00526-004-0272-y
Jr., LászlóSzékelyhidi
article
MR2048569
The regularity of critical points of polyconvex functionals
Arch. Ration. Mech. Anal.
2004
172
1
133--152
https://doi.org/10.1007/s00205-003-0300-7
10.1007/s00205-003-0300-7
Jr., LászlóSzékelyhidi