Publications
Publications
References
84.
Herbert Koch, Angkana Rüland and Wenhui Shi
Higher regularity for the fractional thin obstacle problem
New York J. Math., 25:745--838
2019
83.
Herbert Koch and Daniel Tataru
Conserved energies for the cubic nonlinear Schrödinger equation in one dimension
Duke Math. J., 167(17):3207--3313
2018
82.
Clemens Kienzler, Herbert Koch and Juan Luis Vázquez
Flatness implies smoothness for solutions of the porous medium equation
Calc. Var. Partial Differential Equations, 57(1):Art. 18, 42
2018
81.
Massimiliano Gubinelli, Herbert Koch and Tadahiro Oh
Renormalization of the two-dimensional stochastic nonlinear wave equations
Trans. Amer. Math. Soc., 370(10):7335--7359
2018
80.
Herbert Koch and Junfeng Li
Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili II equation
Comm. Partial Differential Equations, 42(6):950--976
2017
79.
Herbert Koch, Angkana Rüland and Wenhui Shi
The variable coefficient thin obstacle problem: higher regularity
Adv. Differential Equations, 22(11-12):793--866
2017
78.
Herbert Koch, Angkana Rüland and Wenhui Shi
The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary
Ann. Inst. H. Poincaré Anal. Non Linéaire, 34(4):845--897
2017
77.
Patrick Gérard and Herbert Koch
The cubic Szegő flow at low regularity
Séminaire Laurent Schwartz---�quations aux dérivées partielles et applications. Année 2016--2017
page Exp. No. XIV, 14.
Publisher: Ed. Ã?c. Polytech., Palaiseau,
2017
76.
Herbert Koch and Daniel Tataru
Conserved energies for cubic NLS in 1-d
arXiv, 1607.02534
2016
75.
Herbert Koch, Ching-Lung Lin and Jenn-Nan Wang
Doubling inequalities for the Lamé system with rough coefficients
Proc. Amer. Math. Soc., 144(12):5309--5318
2016
74.
Clemens Kienzler, Herbert Koch and Juan Luis Vazquez
Flatness implies smoothness for solutions of the porous medium equation
arXiv, 1609.09048
2016
73.
Herbert Koch, Angkana Rüland and Wenhui Shi
The variable coefficient thin obstacle problem: Carleman inequalities
Adv. Math., 301:820--866
2016
Page:  
Previous | 0, 1, 2, 3, 4, 5 | Next
Export as:
BibTeX, XML