Publications
Publications
Velázquez, Juan J. L.
References
139.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
The Fokker-Planck equation with absorbing boundary conditions
Arch. Ration. Mech. Anal., 214(1):183--233
2014
138.
B. Niethammer and J. J. L. Velázquez
Uniqueness of self-similar solutions to Smoluchowski's coagulation equations for kernels that are close to constant
J. Stat. Phys., 157(1):158--181
2014
137.
K. Kang, I. Primi and J. J. L. Velázquez
A 2D-model of cell sorting induced by propagation of chemical signals along spiral waves
Comm. Partial Differential Equations, 38(6):1069--1122
2013
136.
M. Vela-Pérez, M. A. Fontelos and J. J. L. Velázquez
Ant foraging and geodesic paths in labyrinths: analytical and computational results
J. Theoret. Biol., 320:100--112
2013
135.
Hyung Ju Hwang and Juan J. L. Velázquez
Bistable stochastic biochemical networks: highly specific systems with few chemicals
J. Math. Chem., 51(5):1343--1375
2013
134.
Hyung Ju Hwang and Juan J. L. Velázquez
Bistable stochastic biochemical networks: large chemical networks and systems with many molecules
J. Math. Chem., 51(8):2074--2103
2013
133.
B. Niethammer and J. J. L. Velázquez
Erratum to: Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels [MR3020166]
Comm. Math. Phys., 318(2):533--534
2013
132.
C. M. Cuesta and J. J. L. Velázquez
Fluid accumulation in thin-film flows driven by surface tension and gravity
Appl. Math. Lett., 26(6):649--653
2013
131.
M. Bodnar and J. J. L. Velázquez
Friction dominated dynamics of interacting particles locally close to a crystallographic lattice
Math. Methods Appl. Sci., 36(10):1206--1228
2013
130.
M. Escobedo and J. J. L. Velázquez
Local well posedness for a linear coagulation equation
Trans. Amer. Math. Soc., 365(4):1743--1808
2013
129.
Yukihiro Seki, Yoshie Sugiyama and Juan J. L. Velázquez
Multiple peak aggregations for the Keller-Segel system
Nonlinearity, 26(2):319--352
2013
128.
Hyung Ju Hwang, Jaewoo Jung and Juan J. L. Velázquez
On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains
Discrete Contin. Dyn. Syst., 33(2):723--737
2013
Page:  
Previous | Publications, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | Next
Export as:
BibTeX, XML