Publications
Publications
Author:  
All :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References
499.
Vera Traub and Jens Vygen
An improved upper bound on the integrality ratio for the s-t-path TSP
Oper. Res. Lett., 47(3):225--228
2019
498.
Vera Traub and Jens Vygen
Approaching $\frac32$ for the s-t-path TSP
J. ACM, 66(2):Art. 14, 17
2019
497.
Boris Vertman
Cheeger-Müller theorem on manifolds with cusps
Math. Z., 291(3-4):761--819
2019
496.
Michael Vogt and Christopher Walsh
Estimating nonlinear additive models with nonstationarities and correlated errors
Scand. J. Stat., 46(1):160--199
2019
495.
Eric Bahuaud and Boris Vertman
Long-time existence of the edge Yamabe flow
J. Math. Soc. Japan, 71(2):651--688
2019
494.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions
Arch. Ration. Mech. Anal., 231(3):1309--1400
2019
493.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
On the structure of the singular set for the kinetic Fokker-Planck equations in domains with boundaries
Quart. Appl. Math., 77(1):19--70
2019
492.
Tristan Buckmaster, Camillo De Lellis, Jr., László Székelyhidi and Vlad Vicol
Onsager's conjecture for admissible weak solutions
Comm. Pure Appl. Math., 72(2):229--274
2019
491.
Barbara Niethammer, Alessia Nota, Sebastian Throm and Juan J. L. Velázquez
Self-similar asymptotic behavior for the solutions of a linear coagulation equation
J. Differential Equations, 266(1):653--715
2019
490.
Barbara Niethammer, Alessia Nota, Sebastian Throm and Juan J. L. Velázquez
Self-similar asymptotic behavior for the solutions of a linear coagulation equation
J. Differential Equations, 266(1):653--715
2019
489.
Marco Bonacini, Barbara Niethammer and Juan J. L. Velázquez
Self-similar gelling solutions for the coagulation equation with diagonal kernel
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(3):705--744
2019
488.
Marco Bonacini, Barbara Niethammer and Juan J. L. Velázquez
Self-similar gelling solutions for the coagulation equation with diagonal kernel
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(3):705--744
2019
Page:  
Previous | 1, 2, 3, 4, 5, 6, ... , 42 | Next
Export as:
BibTeX, XML