###PROFILE_NAVI_TOP###
References
12. |
Morphology and classification of galaxies. A stochastic model
Ideas and methods in quantum and statistical physics (Oslo, 1988)
page 447--460.
Publisher: Cambridge Univ. Press, Cambridge,
1992
|
11. |
Feynman-Kac semigroups in terms of signed smooth measures
Random partial differential equations (Oberwolfach, 1989) Volume 102
of Internat. Ser. Numer. Math.
page 1--31.
Publisher: Birkhäuser, Basel,
1991
|
10. |
An inverse problem for stochastic differential equations
J. Statist. Phys.,
57(1-2):347--356
1989
DOI: 10.1007/BF01023648
|
9. |
Diffusions sur une variété riemannienne: barrières infranchissables et applications
page 181--201.
1985
|
8. |
Quantum mechanical low energy scattering in terms of diffusion processes
Stochastic aspects of classical and quantum systems (Marseille, 1983) Volume 1109
of Lecture Notes in Math.
page 207--227.
Publisher: Springer, Berlin,
1985
DOI: 10.1007/BFb0101546
|
7. |
Reduction of nonlinear problems to Schrödinger or heat equations: formation of Kepler orbits, singular solutions for hydrodynamical equations
Stochastic aspects of classical and quantum systems (Marseille, 1983) Volume 1109
of Lecture Notes in Math.
page 189--206.
Publisher: Springer, Berlin,
1985
DOI: 10.1007/BFb0101545
|
6. |
Trapping in stochastic mechanics and applications to covers of clouds and radiation belts
Quantum probability and applications, II (Heidelberg, 1984) Volume 1136
of Lecture Notes in Math.
page 24--39.
Publisher: Springer, Berlin,
1985
DOI: 10.1007/BFb0074456
|
5. |
Newtonian diffusions and planets, with a remark on nonstandard Dirichlet forms and polymers
Stochastic analysis and applications (Swansea, 1983) Volume 1095
of Lecture Notes in Math.
page 1--24.
Publisher: Springer, Berlin,
1984
DOI: 10.1007/BFb0099118
|
4. |
A stochastic model for the orbits of planets and satellites: an interpretation of Titius-Bode law
Exposition. Math.,
1(4):365--373
1983
|
3. |
Local relativistic invariant flows for quantum fields
Comm. Math. Phys.,
90(3):329--351
1983
|
2. |
Feynman path integrals and the trace formula for the Schrödinger operators
Comm. Math. Phys.,
83(1):49--76
1982
|
1. |
Feynman path integrals, the Poisson formula and the theta function for the Schrödinger operators
Trends in applications of pure mathematics to mechanics, Vol. III (Edinburgh, 1979) Volume 11
of Monogr. Stud. Math.
page 1--21.
Publisher: Pitman, Boston, MA,
1981
|