###PROFILE_NAVI_TOP###
References
43. |
$C^{1, \alpha}$ isometric extensions
Comm. Partial Differential Equations,
44(7):613--636
2019
|
42. |
On turbulence and geometry: from Nash to Onsager
Notices Amer. Math. Soc.,
66(5):677--685
2019
|
41. |
Onsager's conjecture for admissible weak solutions
Comm. Pure Appl. Math.,
72(2):229--274
2019
DOI: 10.1002/cpa.21781
|
40. |
Very weak solutions to the two-dimensional Monge-Ampére equation
Sci. China Math.,
62(6):1041--1056
2019
|
39. |
A Nash-Kuiper theorem for $C^{1, \frac{1}{\delta}- \delta}$ immersions of surfaces in 3 dimensions
Rev. Mat. Iberoam.,
34(3):1119--1152
2018
DOI: 10.4171/RMI/1019
|
38. |
Non-uniqueness for the transport equation with Sobolev vector fields
Ann. PDE,
4(2):Art. 18, 38
2018
|
37. |
Piecewise constant subsolutions for the Muskat problem
Comm. Math. Phys.,
363(3):1051--1080
2018
|
36. |
T5-configurations and non-rigid sets of matrices
Calc. Var. Partial Differential Equations,
57(1):Art. 19, 12
2018
|
35. |
High dimensionality and h-principle in PDE
Bull. Amer. Math. Soc. (N.S.),
54(2):247--282
2017
DOI: 10.1090/bull/1549
|
34. |
Laminates supported on cubes
J. Convex Anal.,
24(4):1217--1237
2017
|
33. |
Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations
Arch. Ration. Mech. Anal.,
224(2):471--514
2017
|
32. |
Dissipative Euler flows with Onsager-critical spatial regularity
Comm. Pure Appl. Math.,
69(9):1613--1670
2016
DOI: 10.1002/cpa.21586
|