Publications
Publications
Author:  
All :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Nacar, ... , Nemitz, Nepomnyaschikh, Nesetril, ... , Nurjanov 
References
332.
Ira Neitzel, Konstantin Pieper, Boris Vexler and Daniel Walter
A sparse control approach to optimal sensor placement in PDE-constrained parameter estimation problems
Numer. Math., 143(4):943--984
2019
331.
Ira Neitzel, Thomas Wick and Winnifried Wollner
An optimal control problem governed by a regularized phase-field fracture propagation model. Part II: The regularization limit
SIAM J. Control Optim., 57(3):1672--1690
2019
330.
Thomas Nikolaus and Peter Scholze
Correction to â??On topological cyclic homologyâ?? [ MR3904731]
Acta Math., 222(1):215--218
2019
329.
Shogo Nakasumi and Marc Alexander Schweitzer
Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping
Internat. J. Numer. Methods Engrg., 119(1):1--17
2019
328.
Christian Brennecke, Phan Thành Nam, Marcin Napiórkowski and Benjamin Schlein
Fluctuations of N-particle quantum dynamics around the nonlinear Schrödinger equation
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(5):1201--1235
2019
327.
P. L. Ferrari, P. Ghosal and P. Nejjar
Limit law of a second class particle in TASEP with non-random initial condition
Ann. Inst. Henri Poincaré Probab. Stat., 55(3):1203--1225
2019
326.
Richard D. James, Alessia Nota and Juan J. L. Velázquez
Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: collision-dominated case
J. Nonlinear Sci., 29(5):1943--1973
2019
325.
Anindya De, Elchanan Mossel and Joe Neeman
Noise stability is computable and approximately low-dimensional
Theory Comput., 15:Article 6, 47
2019
324.
Barbara Niethammer, Alessia Nota, Sebastian Throm and Juan J. L. Velázquez
Self-similar asymptotic behavior for the solutions of a linear coagulation equation
J. Differential Equations, 266(1):653--715
2019
323.
Barbara Niethammer, Alessia Nota, Sebastian Throm and Juan J. L. Velázquez
Self-similar asymptotic behavior for the solutions of a linear coagulation equation
J. Differential Equations, 266(1):653--715
2019
322.
Marco Bonacini, Barbara Niethammer and Juan J. L. Velázquez
Self-similar gelling solutions for the coagulation equation with diagonal kernel
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(3):705--744
2019
321.
Marco Bonacini, Barbara Niethammer and Juan J. L. Velázquez
Self-similar gelling solutions for the coagulation equation with diagonal kernel
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(3):705--744
2019
Page:  
Previous | 1, 2, 3, 4, 5, 6, ... , 28 | Next
Export as:
BibTeX, XML