The Equivalence Modulo Non-stationary Ideals and Shelah’s Main Gap Theorem

Miguel Moreno
(Joint work with Tapani Hyttinen and Vadim Kulikov)

Department of Mathematics and Statistics
University of Helsinki

Bonn Set Theory Workshop 2016
Outline

1. Classifying First-order countable Theories

2. The Equivalence Modulo Non-stationary Ideals
Outline

1. Classifying First-order countable Theories

2. The Equivalence Modulo Non-stationary Ideals
Classifying First-order countable Theories

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α.

What is the behavior of $I(T, \alpha)$?

- **Löwenheim-Skolem Theorem:**
 \[\exists \alpha \geq \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \geq \omega \ I(T, \beta) \neq 0. \]

- **Morley’s categoricity:**
 \[\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1 \]

- **Shelah’s Main Gap Theorem:**
 Either, for every uncountable cardinal α, $I(T, \alpha) = 2^\alpha$, or $\forall \alpha > 0 \ I(T, \aleph_\alpha) < \beth_1(\| \alpha \|)$.

Approaches

• Shelah’s stability theory.
 Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory:
 It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.
The topology

κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^\kappa \mid \zeta \subset \eta \}$$

is a basic open set.
Let E_1 and E_2 be equivalence relations on κ^κ. We say that E_1 is \textit{continuous reducible} to E_2, if there is a continuous function $f : \kappa^\kappa \to \kappa^\kappa$ that satisfies $(x, y) \in E_1 \iff (f(x), f(y)) \in E_2$.

We write $E_1 \leq_{\kappa}^c E_2$.
Coding structures

Fix a language $\mathcal{L} = \{ P_n | n < \omega \}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ. For every $f \in \kappa^\kappa$ define the structure A_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m A_f \iff f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^\kappa$ are \cong^κ_T equivalent if

- $A_f \models T, A_g \models T, A_f \cong A_g$

 or

- $A_f \not\models T, A_g \not\models T$
The complexity

We can define a partial order on the set of all first-order complete countable theories

\[T \leq_{\kappa} T' \text{ iff } \cong_{T}^{\kappa} \leq_{c}^{\kappa} \cong_{T'}^{\kappa} \]
The subspace 2^κ

In the subspace 2^κ, we can define the following notions in the same way:

- $E_1 \leq^2 c E_2$.
- $f \sim^2_T g$.
- $T \leq^2_{\kappa} T'$.
Outline

1. Classifying First-order countable Theories

2. The Equivalence Modulo Non-stationary Ideals
The Equivalence Modulo Non-stationary Ideals

Shelah’s Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the spaces κ^κ and 2^κ?
For every regular cardinal \(\lambda < \kappa \), the relations \(E^\kappa_{\lambda\text{-club}} \) and \(E^2_{\lambda\text{-club}} \) are defined as follow.

Definition

- **On the space** \(\kappa^\kappa \), we say that \(f, g \in \kappa^\kappa \) are \(E^\kappa_{\lambda\text{-club}} \) equivalent if the set \(\{ \alpha < \kappa | f(\alpha) = g(\alpha) \} \) contains an unbounded set that is closed under \(\lambda \)-limits.

- **On the space** \(2^\kappa \), we say that \(f, g \in 2^\kappa \) are \(E^2_{\lambda\text{-club}} \) equivalent if the set \(\{ \alpha < \kappa | f(\alpha) = g(\alpha) \} \) contains an unbounded set that is closed under \(\lambda \)-limits.
Looking above the Gap

Theorem (Friedman, Hyttinen, Kulikov)

Suppose \(\kappa = \lambda^+ = 2^\lambda \) and \(\lambda^{<\lambda} = \lambda \).

- If \(T \) is an unstable or superstable with OTOP, then \(E^{2}_{\lambda\text{-club}} \leq^2 c \equiv^2 T \).
- If \(\lambda \geq 2^\omega \) and \(T \) is a superstable with DOP, then \(E^{2}_{\lambda\text{-club}} \leq^2 c \equiv^2 T \).

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that for all \(\gamma < \kappa, \gamma^\omega < \kappa \) and \(T \) is a stable unsuperstable. Then \(E^{2}_{\omega\text{-club}} \leq^2 c \equiv^2 T \).
Looking below the Gap

Theorem (Friedman, Hyttinen, Kulikov)

*If T is a classifiable theory, then for all regular cardinal \(\lambda < \kappa \),
\[
E^2_{\lambda\text{-club}} \not\leq^2_c \sim^2_T
\]*

Theorem (Hyttinen, Moreno)

*Suppose T is a classifiable theory and \(\lambda < \kappa \) is a regular cardinal.
Then \(\sim^\kappa_T \leq^\kappa_c E^\kappa_{\lambda\text{-club}} \).*

Theorem (Hyttinen, Kulikov, Moreno)

Denote by \(S^{\kappa}_{\lambda} \) the set \(\{ \alpha < \kappa | cf(\alpha) = \lambda \} \).
*Suppose T is a classifiable theory and \(\lambda < \kappa \) is a regular cardinal. If
\(\Diamond (S^{\kappa}_{\lambda}) \) holds, then \(\sim^2_T \leq^2_c E^2_{\lambda\text{-club}} \).*
The Gap in ZFC

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then $\sim_T^\kappa \leq^c E_{\omega-club}^\kappa \leq^c \sim_T^\kappa$.

Theorem (Moreno)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^\omega$, and κ an inaccessible cardinal. Then

$\sim_T^\kappa \leq^c E_{\lambda-club}^\kappa \leq^c \sim_T^\kappa$.

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$ and $\lambda^\omega = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\sim_T^2 \leq^c E_{\omega-club}^2 \leq^c \sim_T^2$.
Consistency

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq_{2\kappa} T'$ and $T' \not\leq_{2\kappa} T$.

Theorem

Suppose $\kappa = \lambda^+$, $2^\lambda > 2^\omega$ and $\lambda^{<\lambda} = \lambda$.

1. If $V = L$, then $H(\kappa)$ holds.
2. It is consistent that $H(\kappa)$ holds and there are 2^κ equivalence relations strictly between \cong^{2T_1} and \cong^{2T_2}.
References

