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Some Physical Perspective:

't Hooft, Witten, Gopakumar-Vafa
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Z~ [ ex QPHVA* DA > constA3Kex @4’ DA

~ 3 x X(NDWeight(I) [ labeled trivalent graph.
F:=In(Z) ~ > x*-2thNhF, , This looks like strings!
The fat graphs are actually instantons at infinity on T*S3.

Geometric transition does not change the partition function.
The boundaries of the surfaces close and they become
holomorphic.

F=> x*®72Fg(t), with Fg( Zt Fgh
g=0
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A geometric transition

Figure: The ‘conifold’ transition T*S3Xgs := S2xR*
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A mathematical construction — strict modular categories

Reshetikhin and Turaev

A tensor product R:VXV=V

A unit 1 € 0b(V)

A braiding xpv: U@V -VeU
A twist Oy :V -V

A duality pairing Ny: VeV -1

A copairing Uy:1—-VeV*

A finite collection of simple objects {V)}xe/

Must satisfy 17 axioms.

) =

bottom top
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The sly rank N level k invariant of S3

Using the SMC of reduced tilting modules 7ilt.(sly) with
e = e™/(ktN) and g = e27/(k+N) giyes:

Z(S%) = Factor-Gc(,z)(erl), with z=N and gq=?/(ktN),

Here Gc(,2)(z + 1) is the quantum Barnes function
Furthermore we have:

Z'(S%) = Different Factor - G(Q)(z +1)

=14+ M(— X(5%) ZZDndqa

d=1 n=0

[o.¢] [o.¢]
~ 1+ Z Z N;7du2g_2ad, where a=¢* and —g=¢"
d=1g=0
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Free energy from CS side
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Free energy from GW side

FOW(Xss) = t/24 — & Int + C(3)u2 — ¢(2)tu=2 + 3t2u™2/4
t2 —2
+3u72/12 —

n> h(h — 12)(h ~2) (2m)>="¢(h = 2)(it)"u >

Int

+Z > (it)hue 2
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F':=1In(Z')

-1

=3 S ek D ((—g)k -2+ () k)T e

€7 k=1 d=1

ng,q =0 for g < 0 and all but a finite number of (g, d).
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Exchange rates

BPS states no,1 = 1 rest are zero.

DT = SP D0’1 =0, D1’1 =1, D2’1 = -2, D371 =3, - s
Dop=D12=D:2=0,D30=—2, Dsp=4,---

Connected GW Ny, 4(Xss) = d263(~1)¢ (2 — 1) 5%

Non-contracted Nj, =1, N}, = 1/12, N3, = 1/240, ---
GW Ny, =1/2, N§, = 5/24, Nf, = 13/720, - --
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It appears that there might exist a 3-manifold invariant taking the
form Zy(a, q) such that
o It gives the rank N level k Chern-Simons invariant of M for
a=qV, g = e2mi/(ktN)
@ It has the structure Zy(a,q) = >_ Zy(q)a?
@ The coefficients of Taylor expansion of Zy(q) about g = 0 are
integers.
@ The function Zy(—e™) has an asymptotic expansion at u = 0
along the positive reals.

@ The functions Z4(q) satisfy some funky modularity properties
as evidenced by Hikami and others.

@ It is determined by a finite number of integer BPS invariants.
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The Taylor and asymptotic coefficients

Taylor coef Asymptotic coef
= Donaldson-Thomas inv. = Gromov-Witten inv.
Implicit f(x,y) =0 Parametric x = x(s), y = y(s)

rank 1 torsion-free sheaves possibly disconnected curves

Dnp = f[fn(x,ﬁ)]vfr 1 2.5 = IW;(X,B)]”” 1
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Intuitive description of Donaldson-Thomas

Recall that the Casson invariant is a signed count of the critical
points of the classical Chern-Simons functional:

CS(A) = —

1 1
.:F/tr<§dAoa/\a+§a/\a/\a> with a= A—A,.
™ JMm

Intuitively the DT invariants are a signed count of the critical
points of the holomorphic Chern-Simons functional:

1 1 1
CS(A) = o /Mtr <§8Aoa/\ a-+ ga/\ an a> AQ  with a= A—Ao.
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Witten-Reshetikhin-Turaev; invariants vs.

Aganagic, Klemm, Marino, Vafa; Topological Vertex

Z(x(2,3,5) =AD5 Y v%1’2’3’5)d§1’_1’_1’_1)W,\IMW,\I)GW)\I)G
XE(IN‘,k)4

I 1
Z(|OC3|(]P’1)2) = E e wtqz2H(AP)WMMW/\1/\2W>\2)\3W)\3)\4
Xens'e
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Simple modules vs all partitions

TN=3,k=2 /\x=3,k=2 C /\i.rlx
A= = {(A(1), A(2), -+ )A(1) > A(2) > eg (4,2,0,---) = ED}
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Comparing 2-point functions

N No N
W>\1>\2(N’ q) = 5A1(qu)S>\2(q>\ +pN) .

WM)\z(q) = 5)\1(qc/>)o)5>\2(q>\+poo)'

Here |A| = ZA(p), and s (x1, %z, -+ ) = det(x ) ™") /det(x).

q = e2mi/(k+N) g is a formal variable
on=(N—-1,N—-2,.--,2/10,0,--) Poo = (—1/2,-3/2,-5/2,---)
A= (A1) - I/\I/N A(2) - I/\I/N ) A=(AM1),A(2), )

pn = (G(N=1),3(N=3),--,5(1—N),0,0,--)
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A first unification of WRT invariants at all ranks — Koshkin

There is an extension of dxpr(fop) to all weights that is
componentwise invariant under the action of the affine Weyl
group. Furthermore, this function vanishes on affine domain walls.

If I C A are lattices, f : N — C is [-periodic, and p : N\@ R — C
is continuous with sufficiently fast decay, then

_ VOUA/T) |
> f= fim 2S£

[Nlea/r f ASR ¥ AEA

Dave Auckly Mathematical Sciences Research Institute Gauge-string duality and the structure of CS theory



Unification of levels

Z(My)
__ AO 1
=AD" Y dy J(Ls,)
AE(ANk)
_ —cpomy—c—1
= (N!)"°A°D > ds_,J(L5_,)

[NE(ALN /(N+K)A;N)e
—cAOTy—C—1: N—-1)c - A
= (N1)~CA°D m(t(/\wk))( N dy Ly et
Xe(AN)e

omy—c—1 |- N—-1)c

= A’D m(t(/\/+k))( ) Z dy_ J(Lg
XE(p+/\1[’V)C

omy—c—1 |- N—-1)c — A
— A°D tli%(t(Nqu))( N dgd(Ly)e R

-

e (AsiN)

JetS Nl
—p
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Unification of ranks

Definition

If A\ e /\i["’ is a partition then the sly_; reduction of A is the
partition A obtained by deleting all columns of length N.

If A = ™, then \ = ™.

Proposition (Lukac)

The SU(N) colored Jones polynomial vanishes if any of the labels
have length greater than N. Furthermore,

Ay e T A ag e S 2) = D e A (Lagee 2 Ac)-
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Current Unification

Z(My)
— AOPD—c—1; —tZ\)\|
ATD= lim (¢(N + k) <) AL p
(,\e/\i[’")
— A°p—c-1 lir%(t(l\/"i‘ k))(N—l)C
(1— e—tN) Z e~ tmN Z dX,XCJ(LX,S\c)e_t(Z IApl+IAcl)
m=0

Xe(Ai[N)c—l
Xeens'n
= A°D ! lim (¢(N + Kk)(N=1e (1 — etV
t—
Z ds, J(Ls Yot Pl FIAcl)
Xe(/\i[’\’)c—l
)\CGAi‘NH
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Z(Mp)

_ Aopy—c—1: Nc pjc (N-1)c —t > | Apl

= ATD~ lim YN (N + k) > did(Ly)e p
XE(NS')e

@ This does unify all ranks and levels.
@ It does not decompose into terms with
@ a sensible Taylor expansion about ¢ = 0 and

@ a sensible asymptotic expansion about g = —1.

Perhaps it exists in some modification of the Habiro ring???
oo
B
k=0
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A modular integral satisfies 77" f(—1/7) = f(7) + p(7)
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Definition

The MacMahon function is given by:

e}

M(q) =[x —a")"

n=1
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Factor =
(_I-)N(Nfl)/2Nfl/2(k 4 N)(lfN)/2q72N(N271)/24(1 _ q)N(Nfl)/2
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Different Factor = (gq; q);ONI\/I(q)*l(l _ q)’V(Nfl)/2

where (q; q)os = [[,21(1 — ")
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The quantum Barnes function

The quantum Barnes function hihierarchy is the unique collection
of meromorphic functions on the disk satisfying:

0 6(2)=(2)g = F£
9 GiP1) =1

© Gz +1) = G (26 (2)

0 ()™ InG(x) 2 0for x>0, g € (0,1)
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€ = eXp(ﬂ'l/(k + N)) s q= 62 , vy = €(>\7A+2p)

. € eAtpa) _ e=(Atpa)
dy = dlqu)\ = H elpa) — ¢—(pa)

aEAT

C

(o}
a._ ap a._H ap
p=1ldr, vi=11v
p=1

p=1

D= "Ny /(k+ A2 T () —emle)72,
acAt

/ -0z TT i VY

1/2 N—1)/2

= N"*(k + N) ||<2sm<k N)) .
A=D1 E v)\_ldf.

AeZN:k
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Colors at level k and rank N

VK = (N e A0 < (A4 p,a) < k+ N, forall o € AT},

Dave Auckly Mathematical Sciences Research Institute Gauge-string duality and the structure of CS theory



Definition
The Bernoulli numbers By are defined by their generating function:

z > Zk
ez _ 1 :kZBkF
=0

Definition

The Riemann zeta function is defined by:

1 [e’s) uzfl
(@)= 73 /0 du,

(z e’ —1

where '(z) is the usual gamma function of Euler

r(z) ::/ e tt¥ Ldt.
0
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Stable pairs

Definition

A stable pair is a non-zero section s : Ox — F of a pure sheaf F
with Hilbert polynomial x(F ® L®K) = k [3c(L) + n.

Dave Auckly Mathematical Sciences Research Institute Gauge-string duality and the structure of CS theory





