Getting physics from 3d gravity: What does an observer in 3d gravity see?

August 3 2009

Workshop “Chern-Simons Gauge Theory: 20 years after”
Hausdorff Center for Mathematics, Bonn

Catherine Meusburger
Department Mathematik
Universität Hamburg
Germany

C. Meusburger, Class. Quantum Grav. 26 (2009) 055006
Motivation
Motivation

(2+1)-gravity
Motivation

(2+1)-gravity

Physics: toy model for (quantum) gravity in higher dimensions
Motivation

(2+1)-gravity physics: toy model for (quantum) gravity in higher dimensions
 • black hole physics, AdS-CFT correspondence, ...
Motivation

(2+1)-gravity

Physics: toy model for (quantum) gravity in higher dimensions
 - black hole physics, AdS-CFT correspondence, ...
 - conceptual questions of (quantum) gravity:
Motivation

(2+1)-gravity

Physics: toy model for (quantum) gravity in higher dimensions
- black hole physics, AdS-CFT correspondence, ...
- conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
 - black hole physics, AdS-CFT correspondence, ...
 - conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance,...

mathematics: rich mathematical structure
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
 - black hole physics, AdS-CFT correspondence, ...
 - conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance,...

mathematics: rich mathematical structure
 - Teichmüller geometry, Fuchsian groups,
Motivation

(2+1)-gravity

Physics: toy model for (quantum) gravity in higher dimensions
 - black hole physics, AdS-CFT correspondence, ...
 - conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

Mathematics: rich mathematical structure
 - Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
- black hole physics, AdS-CFT correspondence, ...
- conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

mathematics: rich mathematical structure
- Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
- TQFTs, WRT invariants, quantum groups, ...
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
 - black hole physics, AdS-CFT correspondence, ...
 - conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

mathematics: rich mathematical structure
 - Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
 - TQFTs, WRT invariants, quantum groups, ...

Relation to Chern-Simons theory [Witten]
Motivation

(2+1)-gravity

Physics: toy model for (quantum) gravity in higher dimensions
 • black hole physics, AdS-CFT correspondence, ...
 • conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance,...

Mathematics: rich mathematical structure
 • Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake,...
 • TQFTs, WRT invariants, quantum groups, ...

Relation to Chern-Simons theory [Witten]
 • formulation as Chern-Simons gauge theory
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
- black hole physics, AdS-CFT correspondence, ...
- conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

mathematics: rich mathematical structure
- Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
- TQFTs, WRT invariants, quantum groups, ...

Relation to Chern-Simons theory [Witten]
- formulation as Chern-Simons gauge theory
 ➡ advances in classical description and quantisation
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions
- black hole physics, AdS-CFT correspondence, ...
- conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

mathematics: rich mathematical structure
- Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
- TQFTs, WRT invariants, quantum groups, ...

Relation to Chern-Simons theory [Witten]
- formulation as Chern-Simons gauge theory
 ➡ advances in classical description and quantisation
 ➡ but: subtleties, not 100% equivalent (de Sitter case,
Motivation

(2+1)-gravity

physics: toy model for (quantum) gravity in higher dimensions

- black hole physics, AdS-CFT correspondence, ...
- conceptual questions of (quantum) gravity: time, observers, diffeomorphism invariance, ...

mathematics: rich mathematical structure

- Teichmüller geometry, Fuchsian groups, hyperbolic geometry, grafting and earthquake, ...
- TQFTs, WRT invariants, quantum groups, ...

Relation to Chern-Simons theory [Witten]

- formulation as Chern-Simons gauge theory
 - advances in classical description and quantisation
 - but: subtleties, not 100% equivalent (de Sitter case, holonomy failure, degenerate metrics,...)
(2+1)-gravity
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory

✓ phase space and quantisation
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
(2+1)-gravity

gauge theoretical viewpoint
 ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants,
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants,
 knot polynomials, TQFTs
(2+1)-gravity

gauge theoretical viewpoint
 ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants,
 knot polynomials, TQFTs
 combinatorial quantisation,...
(2+1)-gravity

gauge theoretical viewpoint
 ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...
? physical interpretation (GR...
(2+1)-gravity

gauge theoretical viewpoint ~ Chern-Simons theory

✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint ~ general relativity
(2+1)-gravity

Gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops, ...
✓ quantisation: WRT invariants,
 knot polynomials, TQFTs
 combinatorial quantisation, ...

Geometrical viewpoint
~ general relativity
✓ interpretation: observers,

? physical interpretation (GR...
(2+1)-gravity

gauge theoretical viewpoint

~ Chern-Simons theory

✓ phase space and quantisation

✓ fundamental variables:
 holonomies, Wilson loops,...

✓ quantisation: WRT invariants,
 knot polynomials, TQFTs
 combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint

~ general relativity

✓ interpretation: observers,
 geodesics, time, causality...
(2+1)-gravity

gauge theoretical viewpoint

~ Chern-Simons theory

✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint

~ general relativity

✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues:
(2+1)-gravity

gauge theoretical viewpoint ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables: holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
✓ combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint ~ general relativity
✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues: diffeomorphism invariance,
(2+1)-gravity

gauge theoretical viewpoint ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables: holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
✓ combinatorial quantisation,...
?
? physical interpretation (GR...)

geometrical viewpoint ~ general relativity
✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues: diffeomorphism invariance, quantum “spacetime”,

(2+1)-gravity

gauge theoretical viewpoint
- Chern-Simons theory
 - phase space and quantisation
 - fundamental variables: holonomies, Wilson loops,...
 - quantisation: WRT invariants, knot polynomials, TQFTs
 - combinatorial quantisation,...
 - physical interpretation (GR...)

geometrical viewpoint
- general relativity
 - interpretation: observers, geodesics, time, causality...
 - conceptual issues: diffeomorphism invariance, quantum “spacetime”, measurements,...
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...
?
 physical interpretation (GR...)

geometrical viewpoint
~ general relativity
✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues:
 diffeomorphism invariance, quantum “spacetime”, measurements,...
?
 how to include in gauge theoretical description
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...

fundamental variables:
holonomies, Wilson loops,...
quantisation: WRT invariants, knot polynomials, TQFTs
combinatorial quantisation,...

✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues:
diffeomorphism invariance, quantum “spacetime”, measurements,...

? physical interpretation (GR...)

? how to include in gauge theoretical description

aim: close the gap to...
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory

✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs
 combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint
~ general relativity

✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues: diffeomorphism invariance, quantum “spacetime”, measurements,...

? how to include in gauge theoretical description

aim: close the gap to...
• get interesting physics in (2+1)-(quantum) gravity
(2+1)-gravity

gauge theoretical viewpoint ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables: holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs, combinatorial quantisation,...

? physical interpretation (GR...)

geometrical viewpoint ~ general relativity
✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues: diffeomorphism invariance, quantum “spacetime”, measurements,...

? how to include in gauge theoretical description

aim: close the gap to...
• get interesting physics in (2+1)-(quantum) gravity
• investigate conceptual issues of (quantum) gravity
(2+1)-gravity

gauge theoretical viewpoint ~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables: holonomies, Wilson loops,...
✓ quantisation: WRT invariants, knot polynomials, TQFTs, combinatorial quantisation,...

? physical interpretation (GR...)

general relativity
✓ interpretation: observers, geodesics, time, causality...
✓ conceptual issues: diffeomorphism invariance, quantum “spacetime”, measurements,...

? how to include in gauge theoretical description

aim: close the gap to...
• get interesting physics in (2+1)-(quantum) gravity
• investigate conceptual issues of (quantum) gravity rigorously in concrete example
(2+1)-gravity

gauge theoretical viewpoint
~ Chern-Simons theory
✓ phase space and quantisation
✓ fundamental variables:
 holonomies, Wilson loops,...
✓ quantisation: WRT invariants,
 knot polynomials, TQFTs
 combinatorial quantisation,...

fundamental variables:
holonomies, Wilson loops,...
quantisation: WRT invariants,
knot polynomials, TQFTs
combinatorial quantisation,...

interpretation: observers,
geodesics, time, causality...

conceptual issues:
diffeomorphism invariance,
quantum “spacetime”,
measurements,...

✓ conceptual issues:
diffeomorphism invariance,
quantum “spacetime”,
measurements,...

? how to include in gauge
theoretical description

? physical interpretation (GR...)

geometrical viewpoint
~ general relativity

geometrical viewpoint
~ general relativity

interpretation: observers,
geodesics, time, causality...

conceptual issues:
diffeomorphism invariance,
quantum “spacetime”,
measurements,...

✓ interpretation: observers,
geodesics, time, causality...

✓ conceptual issues:
diffeomorphism invariance,
quantum “spacetime”,
measurements,...

aim: close the gap to...

• get interesting physics in (2+1)-(quantum) gravity
• investigate conceptual issues of (quantum) gravity

rigorously in concrete example

• clarify: “quantum gravity as quantisation of geometry“?

aim: close the gap to...

• get interesting physics in (2+1)-(quantum) gravity
• investigate conceptual issues of (quantum) gravity

rigorously in concrete example

• clarify: “quantum gravity as quantisation of geometry“?
This talk: address this issue in classical theory
This talk: address this issue in classical theory

• What can observer in (2+1)-spacetime measure?
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables,
This talk: address this issue in classical theory

• What can observer in (2+1)-spacetime measure?
• How to determine physical state, spacetime geometry?
• Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
- maximally globally hyperbolic spacetimes
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus $g\geq 2$
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus $g \geq 2$

\Rightarrow topology $\mathcal{M} \approx \mathbb{R} \times S_g, \ g \geq 2$
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus $g \geq 2$

\Rightarrow topology $M \approx \mathbb{R} \times S_g$, $g \geq 2$

Why?
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus $g \geq 2$

Why? physically relevant (sensible causality behaviour)
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with \(\Lambda = 0 \)
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus \(g \geq 2 \)

 \[M \approx \mathbb{R} \times S_g, \ g \geq 2 \]

Why?
- physically relevant (sensible causality behaviour)
- mathematically tractable
This talk: address this issue in classical theory

- What can observer in (2+1)-spacetime measure?
- How to determine physical state, spacetime geometry?
- Relation of measurements to phase space variables, variables used in quantisation (holonomies, Wilson loops)?

setting:
- vacuum spacetimes, Lorentzian (2+1)-gravity with \(\Lambda = 0 \)
- maximally globally hyperbolic spacetimes
- compact Cauchy surface of genus \(g \geq 2 \)
 - topology \(M \approx \mathbb{R} \times S_g, \ g \geq 2 \)

Why?
- physically relevant (sensible causality behaviour)
- mathematically tractable
- issues in relation of Chern-Simons theory and (2+1)-gravity not present (no holonomy failure)
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
Contents

1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda = 0$

2. Idea:
 measuring spacetime geometry via returning lightrays
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
Contents

1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning light rays

3. Measurements associated with returning light rays:
 • return time
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
 - return time
 - angles
3. Measurements associated with returning lightrays:
 - return time
 - angles
 - frequency shift
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
 - return time
 - angles
 - frequency shift

\Rightarrow explicit expressions in terms of phase space variables
Contents

1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
 - return time \Rightarrow explicit expressions in terms of phase space variables
 - angles
 - frequency shift \Rightarrow geometrical interpretation
Contents

1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
 - return time
 - angles
 - frequency shift
 ⇒ explicit expressions in terms of phase space variables
 ⇒ geometrical interpretation

4. Conceptual issues: observers, phase space and time
1. Background:
 Vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

2. Idea:
 measuring spacetime geometry via returning lightrays

3. Measurements associated with returning lightrays:
 - return time
 - angles
 - frequency shift

4. Conceptual issues: observers, phase space and time

5. Reconstructing spacetime geometry from measurements
3. Measurements associated with returning light rays:
 - return time
 - angles
 - frequency shift

4. Conceptual issues: observers, phase space and time

5. Reconstructing spacetime geometry from measurements

6. Outlook and conclusions
1. Background: (2+1)- vacuum spacetimes
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$ maximally globally hyperbolic spacetimes topology $M \approx \mathbb{R} \times S_g, \ g \geq 2$
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$ maximally globally hyperbolic spacetimes topology $M \approx \mathbb{R} \times S_g, \ g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
maximally globally hyperbolic spacetimes

topology $\mathcal{M} \approx \mathbb{R} \times S^g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

d spacetimes flat, locally isometric to \mathbb{M}^3
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$
maximally globally hyperbolic spacetimes

topology $\mathcal{M} \cong \mathbb{R} \times S_g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$ maximally globally hyperbolic spacetimes

- topology $M \approx \mathbb{R} \times S^g$, $g \geq 2$

Absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \rtimes \mathbb{R}^3$
- global degrees of freedom due to nontrivial topology
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$ maximally globally hyperbolic spacetimes

topology $\mathcal{M} \approx \mathbb{R} \times S^g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

▷ spacetimes flat, locally isometric to \mathbb{M}^3

▷ local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$

▷ global degrees of freedom due to nontrivial topology

▷ **phase space** $\text{Hom}_0(\pi_1(M), P_3)/P_3$
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$

maximally globally hyperbolic spacetimes
topology $M \approx \mathbb{R} \times S^g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$
- global degrees of freedom due to nontrivial topology

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

parametrised by P_3 - valued holonomies along a set of generators of $\pi_1(M) = \pi_1(S^g)$
1. **Background: (2+1)- vacuum spacetimes**

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$ maximally globally globally hyperbolic spacetimes topology $M \approx \mathbb{R} \times S_g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$
- global degrees of freedom due to nontrivial topology

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

- parametrised by P_3 - valued holonomies along a set of generators of $\pi_1(M) = \pi_1(S_g)$
- finite dimensional
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda=0$

maximally globally hyperbolic spacetimes

topology $M \approx \mathbb{R} \times S_g, \ g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$
- global degrees of freedom due to nontrivial topology

Phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

- parametrised by P_3 - valued **holonomies** along a set of generators of $\pi_1(M) = \pi_1(S_g)$
- finite dimensional

- complete set of diffeomorphism invariant observables:
 Wilson loops: $\lambda \in \pi_1(S_g) \rightarrow f(h_{\lambda}), \ f(gug^{-1}) = f(u)$
1. Background: (2+1)- vacuum spacetimes

Setting vacuum spacetimes, Lorentzian (2+1)-gravity with $\Lambda = 0$
maximally globally hyperbolic spacetimes
topology $M \approx \mathbb{R} \times S_g$, $g \geq 2$

absence of local gravitational degrees of freedom in (2+1)d

- spacetimes flat, locally isometric to \mathbb{M}^3
- local isometry group $P_3 = PSL(2, \mathbb{R}) \ltimes \mathbb{R}^3$
- global degrees of freedom due to nontrivial topology

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

parametrised by P_3 - valued holonomies along a set of

generators of $\pi_1(M) = \pi_1(S_g)$

finite dimensional

complete set of diffeomorphism invariant observables:
Wilson loops: $\lambda \in \pi_1(S_g) \rightarrow f(h_\lambda)$, $f(gu g^{-1}) = f(u)$

central role in quantisation of theory
Phase space and geometry: spacetimes as quotients of Minkowski space

[Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...
Phase space and geometry: spacetimes as quotients of Minkowski space [Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...

1. Universal cover = regular domain
Phase space and geometry: spacetimes as quotients of Minkowski space

1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]
Phase space and geometry: spacetimes as quotients of Minkowski space [Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...

1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]

- open, future complete region in Minkowski space
Phase space and geometry: spacetimes as quotients of Minkowski space [Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini], ...

1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]

- open, future complete region in Minkowski space
- initial singularity \(D_0 \)
Phase space and geometry: spacetimes as quotients of Minkowski space \[\text{[Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...} \]

1. Universal cover = regular domain \[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset M^3 \]
- open, future complete region in Minkowski space
- initial singularity \(D_0 \)
- foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)
Phase space and geometry: spacetimes as quotients of Minkowski space \([\text{Mess}], [\text{Benedetti}], [\text{Barbot}], [\text{Bonsante}], [\text{Guadagnini}], \ldots\)

1. **Universal cover = regular domain**
 \[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset M^3 \]
 - open, future complete region in Minkowski space
 - initial singularity \(D_0\)
 - foliated by surfaces \(D_T\) of constant cosmological time \(T\) (cct)

2. **Group homomorphism (holonomies)**
 \[h \in \text{Hom}_0(\pi_1(M), P_3) \]
Phase space and geometry: spacetimes as quotients of Minkowski space [Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...

1. Universal cover = regular domain

- open, future complete region in Minkowski space
- initial singularity D_0
- foliated by surfaces D_T of constant cosmological time T (cct)

$$D = \bigcup_{T \in \mathbb{R}^+} D_T \subset M^3$$

2. Group homomorphism (holonomies) $h \in \text{Hom}_0(\pi_1(M), P_3)$

- Lorentzian part = cocompact Fuchsian group of genus g
Phase space and geometry: spacetimes as quotients of Minkowski space [Mess], [Benedetti], [Barbot], [Bonsante], [Guadagnini],...

1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset M^3 \]

- open, future complete region in Minkowski space
- initial singularity \(D_0 \)
- foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. Group homomorphism (holonomies)

\[h \in \text{Hom}_0(\pi_1(M), P_3) \]

- Lorentzian part = cocompact Fuchsian group of genus \(g \)

\[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \ldots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1) \]
1. Universal cover = regular domain \[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]
 - open, future complete region in Minkowski space
 - initial singularity \(D_0 \)
 - foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. Group homomorphism (holonomies) \(h \in \text{Hom}_0(\pi_1(M), P_3) \)
 - Lorentzian part = cocompact Fuchsian group of genus \(g \)
 \[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1) \]
 - group action of \(\pi_1(M) \) on domain \(D \)
1. Universal cover = regular domain
 \[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]
 - open, future complete region in Minkowski space
 - initial singularity \(D_0 \)
 - foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. Group homomorphism (holonomies) \(h \in \text{Hom}_0(\pi_1(M), P_3) \)
 - Lorentzian part = cocompact Fuchsian group of genus \(g \)
 \[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots v_{a_g}, v_{b_g} | [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO^+_0(2, 1) \]
 - group action of \(\pi_1(M) \) on domain \(D \)
 - free, properly discontinuous, preserves cct-surfaces \(D_T \)
Phase space and geometry: spacetimes as quotients of Minkowski space

1. **Universal cover = regular domain**

 \[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]

 - open, future complete region in Minkowski space
 - initial singularity \(D_0 \)
 - foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. **Group homomorphism (holonomies)**

 \[h \in \text{Hom}_0(\pi_1(M), P_3) \]

 - Lorentzian part = cocompact Fuchsian group of genus \(g \)

 \[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1) \]

 - group action of \(\pi_1(M) \) on domain \(D \)

 - free, properly discontinuous, preserves cct-surfaces \(D_T \)

3. **Spacetime: quotient of domain by group action**
1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathbb{M}^3 \]

- open, future complete region in Minkowski space
- initial singularity \(D_0 \)
- foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. Group homomorphism (holonomies) \(h \in \text{Hom}_0(\pi_1(M), P_3) \)

- Lorentzian part = cocompact Fuchsian group of genus \(g \)

\[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1) \]

- group action of \(\pi_1(M) \) on domain \(D \)
- free, properly discontinuous, preserves cct-surfaces \(D_T \)

3. Spacetime: quotient of domain by group action

\[M = \bigcup_{T \in \mathbb{R}^+} M_T \quad M_T = D_T / h(\Gamma) \]
1. Universal cover = regular domain

\[D = \bigcup_{T \in \mathbb{R}^+} D_T \subset \mathcal{M}^3 \]

- open, future complete region in Minkowski space
- initial singularity \(D_0 \)
- foliated by surfaces \(D_T \) of constant cosmological time \(T \) (cct)

2. Group homomorphism (holonomies)

\[h \in \text{Hom}_0(\pi_1(M), P_3) \]

- Lorentzian part = cocompact Fuchsian group of genus \(g \)

\[\Gamma = \langle v_{a_1}, v_{b_1}, \ldots, v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1) \]

- group action of \(\pi_1(M) \) on domain \(D \)
- free, properly discontinuous, preserves cct-surfaces \(D_T \)

3. Spacetime: quotient of domain by group action

\[M = \bigcup_{T \in \mathbb{R}^+} M_T \quad M_T = D_T / h(\Gamma) \quad g_M = -dT^2 + g_{M_T} \]
Example: conformally static spacetimes
Example: conformally static spacetimes

regular domain
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in M^3 \)
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in \mathbb{M}^3$
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in M^3$
- initial singularity $D_0 = \{p\}$
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in \mathbb{M}^3$
- initial singularity $D_0=\{p\}$
- cct-surfaces: hyperboloids $T \cdot \mathbb{H}^2$
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in \mathbb{M}^3$
- initial singularity $D_0 = \{p\}$
- cct-surfaces: hyperboloids $T \cdot \mathbb{H}^2$

group homomorphism (holonomies) $h(\lambda) = (1, p)(v_\lambda, 0)(1, -p)$
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in \mathbb{M}^3$
- initial singularity $D_0 = \{p\}$
- cct-surfaces: hyperboloids $T \cdot \mathbb{H}^2$

group homomorphism (holonomies) $h(\lambda) = (1, p)(v_\lambda, 0)(1, -p)$
→ translation component: conjugation with constant vector p
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in \mathbb{M}^3 \)
- initial singularity \(D_0 = \{ p \} \)
- cct-surfaces: hyperboloids \(T \cdot \mathbb{H}^2 \)

group homomorphism (holonomies)
\[h(\lambda) = (1, p)(v_\lambda, 0)(1, -p) \]

- translation component: conjugation with constant vector \(p \)
- action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(\mathbb{H}^2 \)
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in M^3 \)
- initial singularity \(D_0 = \{ p \} \)
- cct-surfaces: hyperboloids \(T \cdot H^2 \)

group homomorphism (holonomies) \(h(\lambda) = (1, p)(v_\lambda, 0)(1, -p) \)
 - translation component: conjugation with constant vector \(p \)
 - action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(H^2 \)
 - tessellation of \(H^2 \) by geodesic arc 4g-gons
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in M^3$
- initial singularity $D_0 = \{p\}$
- cct-surfaces: hyperboloids $T \cdot \mathbb{H}^2$

group homomorphism (holonomies) $h(\lambda) = (1, p)(v_\lambda, 0)(1, -p)$

▷ translation component: conjugation with constant vector p
▷ action of Γ on cct-surfaces = canonical action of Γ on \mathbb{H}^2
▷ tesselation of \mathbb{H}^2 by geodesic arc 4g-gons
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in M^3 \)
- initial singularity \(D_0 = \{ p \} \)
- cct-surfaces: hyperboloids \(T \cdot \mathbb{H}^2 \)

group homomorphism (holonomies)
\[h(\lambda) = (1, p)(v_\lambda, 0)(1, -p) \]
\(\Rightarrow \) translation component: conjugation with constant vector \(p \)
\(\Rightarrow \) action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(\mathbb{H}^2 \)
\(\Rightarrow \) tessellation of \(\mathbb{H}^2 \) by geodesic arc 4g-gons
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in \mathbb{M}^3 \)
- initial singularity \(D_0 = \{p\} \)
- cct-surfaces: hyperboloids \(T \cdot \mathbb{H}^2 \)

group homomorphism (holonomies)
\[
h(\lambda) = (1, p)(v_\lambda, 0)(1, -p)
\]
- translation component: conjugation with constant vector \(p \)
- action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(\mathbb{H}^2 \)
- tessellation of \(\mathbb{H}^2 \) by geodesic arc 4g-gons

\[
\Sigma_g = \mathbb{H}^2 / \Gamma
\]
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in \mathbb{M}^3 \)
- initial singularity \(D_0 = \{ p \} \)
- cct-surfaces: hyperboloids \(T \cdot \mathbb{H}^2 \)

group homomorphism (holonomies) \(h(\lambda) = (1, p)(v_\lambda, 0)(1, -p) \)

▷ translation component: conjugation with constant vector \(p \)
▷ action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(\mathbb{H}^2 \)
▷ tessellation of \(\mathbb{H}^2 \) by geodesic arc 4g-gons

\[\Sigma_g = \mathbb{H}^2 / \Gamma \]
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at $p \in \mathbb{M}^3$
- initial singularity $D_0 = \{p\}$
- cct-surfaces: hyperboloids $T \cdot \mathbb{H}^2$

group homomorphism (holonomies) $h(\lambda) = (1, p)(v_\lambda, 0)(1, -p)$
▶ translation component: conjugation with constant vector p
▶ action of Γ on cct-surfaces = canonical action of Γ on \mathbb{H}^2
▶ tessellation of \mathbb{H}^2 by geodesic arc 4g-gons

quotient spacetime $M = \bigcup_{T \in \mathbb{R}^+} T \cdot \Sigma_g$
Example: conformally static spacetimes

regular domain
- interior of future lightcone based at \(p \in \mathbb{M}^3 \)
- initial singularity \(D_0 = \{p\} \)
- cct-surfaces: hyperboloids \(T \cdot \mathbb{H}^2 \)

group homomorphism (holonomies) \(h(\lambda) = (1, p)(v_\lambda, 0)(1, -p) \)

▷ translation component: conjugation with constant vector \(p \)
▷ action of \(\Gamma \) on cct-surfaces = canonical action of \(\Gamma \) on \(\mathbb{H}^2 \)
▷ tesselation of \(\mathbb{H}^2 \) by geodesic arc 4g-gons

quotient spacetime
\[
M = \bigcup_{T \in \mathbb{R}^+} T \cdot \Sigma_g
\]
\[
g_M = -dT^2 + T^2 g\Sigma_g
\]
Evolving spacetimes via grafting [Mess], [Thurston]
Evolving spacetimes via grafting [Mess], [Thurston]
Evolving spacetimes via grafting

ingredients
- cocompact Fuchsian group Γ
Evolving spacetimes via grafting [Mess], [Thurston]

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$
Evolving spacetimes via grafting \cite{Mess}, \cite{Thurston}

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case: multicurve = non-intersecting closed, weighted geodesics on Σ_g)
Evolving spacetimes via grafting

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$
 (simplest case: multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
Evolving spacetimes via grafting [Mess], [Thurston]

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case: multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight
Evolving spacetimes via grafting

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case:
multicurve = non-intersecting closed,weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight
Evolving spacetimes via grafting [Mess], [Thurston]

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case: multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
 - gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes
Evolving spacetimes via grafting

Ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case: multicurve = non-intersecting closed, weighted geodesics on Σ_g)

Grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight

Grafting (2+1)-spacetimes
- grafting simultaneously on each cct-surface of static spacetime
Evolving spacetimes via grafting

ingredients
- cocompact Fuchsian group \(\Gamma \)
- measured geodesic lamination on Riemann surface \(\Sigma_g = \mathbb{H}^2 / \Gamma \)

(simplest case:
multicurve = non-intersecting closed, weighted geodesics on \(\Sigma_g \))

grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes
- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)
Evolving spacetimes via grafting

Ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case:
multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes
- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)

✧ evolving spacetime
Evolving spacetimes via grafting

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case:
multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes
- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)

✧ **evolving spacetime**
- holonomies acquire non-trivial translational component
Evolving spacetimes via grafting \cite{Mess}, \cite{Thurston}

ingredients
- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

(simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface
- gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes
- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)

\[\diamond \text{ evolving spacetime} \]
- holonomies acquire non-trivial translational component
- geometry of cct-surfaces changes with cosmological time
Evolution with the cosmological time

Static spacetime

Grafted spacetime

\[T \]
Phase space and observables
Phase space and observables

phase space
Phase space and observables

phase space [Mess]
- group homomorphism $h : \pi_1(M) \rightarrow P_3$ (holonomies) determines spacetime completely
Phase space and observables

phase space [Mess]

- group homomorphism $h : \pi_1(M) \rightarrow P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$

$$\{h'(\lambda) \mid \lambda \in \pi_1(M)\} = h_0 \cdot \{h(\lambda) \mid \lambda \in \pi_1(M)\} \cdot h_0^{-1}$$
Phase space and observables

phase space [Mess]
- group homomorphism \(h : \pi_1(M) \rightarrow P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)

\[
\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1}
\]

\(\Rightarrow \) phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
Phase space and observables

phase space [Mess]
- group homomorphism \(h : \pi_1(M) \rightarrow P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
 \[\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1} \]

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
Phase space and observables

phase space [Mess]
- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
\[
\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1}
\]

\(\Rightarrow \) phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
\(\Leftrightarrow \) functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under simultaneous conjugation with \(P_3 \)
Phase space and observables

phase space [Mess]
- group homomorphism $h : \pi_1(M) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
 $$\{h'(\lambda) \mid \lambda \in \pi_1(M)\} = h_0 \cdot \{h(\lambda) \mid \lambda \in \pi_1(M)\} \cdot h_0^{-1}$$

phasispace $\text{Hom}_0(\pi_1(M), P_3)/P_3$

Dirac observables functions on $\text{Hom}_0(\pi_1(M), P_3)/P_3$

\iff functions of the holonomies $h(\lambda), \lambda \in \pi_1(M)$ invariant under simultaneous conjugation with P_3

Wilson loops
Phase space and observables

phase space [Mess]
- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
\[
\{h'(\lambda) \mid \lambda \in \pi_1(M)\} = h_0 \cdot \{h(\lambda) \mid \lambda \in \pi_1(M)\} \cdot h_0^{-1}
\]

\(\triangleright \) phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
\(\Leftrightarrow \) functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under simultaneous conjugation with \(P_3 \)

Wilson loops
-conj. inv. functions of holonomies along closed curves in M
Phase space and observables

phase space [Mess]

- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies)
determines spacetime completely
- spacetimes isometric iff holonomies related by
conjugation with constant element \(h_0 \in P_3 \)
\[
\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1}
\]

\(\Rightarrow \) **phase space** \(\text{Hom}_0(\pi_1(M), P_3) / P_3 \)

Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3) / P_3 \)
\(\Leftrightarrow \) functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under
simultaneous conjugation with \(P_3 \)

Wilson loops

- conjug. inv. functions of holonomies along closed curves in \(M \)
- two fundamental Wilson loop observables for \(\lambda \in \pi_1(M) \)
Phase space and observables

Phase space [Mess]
- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
\[\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1} \]

Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
\[\Leftrightarrow \] functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under simultaneous conjugation with \(P_3 \)

Wilson loops
- conjug. inv. functions of holonomies along closed curves in \(M \)
- two fundamental Wilson loop observables for \(\lambda \in \pi_1(M) \)
\[h(\lambda) = (\exp(n_{\lambda}^a J_a), a_\lambda) \]
Phase space and observables

Phase space [Mess]
- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
 \[\{h'(\lambda) \mid \lambda \in \pi_1(M)\} = h_0 \cdot \{h(\lambda) \mid \lambda \in \pi_1(M)\} \cdot h_0^{-1} \]

\(\therefore \) **phase space** \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
\(\iff \) functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under simultaneous conjugation with \(P_3 \)

Wilson loops
- conjug. inv. functions of holonomies along closed curves in \(M \)
- two fundamental Wilson loop observables for \(\lambda \in \pi_1(M) \)
 \[h(\lambda) = (\exp(n^a_\lambda J_a), a_\lambda) \]

mass \(m : \lambda \mapsto m_\lambda = |n_\lambda| \)
Phase space and observables

phase space [Mess]
- group homomorphism \(h : \pi_1(M) \to P_3 \) (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element \(h_0 \in P_3 \)
 \[\{ h'(\lambda) \mid \lambda \in \pi_1(M) \} = h_0 \cdot \{ h(\lambda) \mid \lambda \in \pi_1(M) \} \cdot h_0^{-1} \]

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

Dirac observables functions on \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
 \(\Leftrightarrow \) functions of the holonomies \(h(\lambda), \lambda \in \pi_1(M) \) invariant under simultaneous conjugation with \(P_3 \)

Wilson loops
- conjug. inv. functions of holonomies along closed curves in \(M \)
- two fundamental Wilson loop observables for \(\lambda \in \pi_1(M) \)
 \[h(\lambda) = (\exp(n^a_\lambda J_a), a_\lambda) \]

mass \(m : \lambda \mapsto m_\lambda = |n_\lambda| \)
spin \(s : \lambda \mapsto s_\lambda = \hat{n}_\lambda \cdot a_\lambda \)
2. Measurements via returning light rays
2. Measurements via returning light rays

problems / questions
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops) ?
- what can be measured by observer in empty spacetime?
2. Measurements via returning light rays

Problems / Questions
- Physical interpretation of observables (Wilson loops)?
- What can be measured by observer in empty spacetime?
- How can observer distinguish different spacetimes?
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test light rays” that return to him/her for certain directions
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops) ?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer ?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test lightrays” that return to him/her for certain directions

measured quantities
- **return time:**
 eigentime elapsed between emission and return of lightray
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- return time:
 eigentime elapsed between emission and return of lightray
- angles between directions that yield returning light rays
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops) ?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer ?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- return time: eigentime elapsed between emission and return of light ray
- angles between directions that yield returning light rays
- frequency shifts between emitted and returning light rays
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test lightrays” that return to him/her for certain directions

measured quantities
- **return time:**
 eigentime elapsed between emission and return of lightray
- **angles** between directions that yield returning lightrays
- **frequency shifts** between emitted and returning lightrays

similar to gravitational lensing
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- **return time:**
 eigentime elapsed between emission and return of light ray
- **angles** between directions that yield returning light rays
- **frequency shifts** between emitted and returning light rays

similar to gravitational lensing
- spacetime probed via light rays, multiple images of source
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops) ?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer ?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- return time:
 eigentime elapsed between emission and return of light ray
- angles between directions that yield returning light rays
- frequency shifts between emitted and returning light rays

similar to gravitational lensing
- spacetime probed via light rays, multiple images of source
 - here: observer = source
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops) ?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer ?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- return time:
 eigentime elapsed between emission and return of light ray
- angles between directions that yield returning light rays
- frequency shifts between emitted and returning light rays

similar to gravitational lensing
- spacetime probed via light rays, multiple images of source
- here: observer = source
- effect due to topology
2. Measurements via returning light rays

problems / questions
- physical interpretation of observables (Wilson loops)?
- what can be measured by observer in empty spacetime?
- how can observer distinguish different spacetimes?
- phase space functions for measurements by observer?

idea: observer emits “test light rays” that return to him/her for certain directions

measured quantities
- return time:
 eigentime elapsed between emission and return of light ray
- angles between directions that yield returning light rays
- frequency shifts between emitted and returning light rays

similar to gravitational lensing
- spacetime probed via light rays, multiple images of source
- here: observer = source
- effect due to topology

✧ “topological lensing”
3. Measurements via returning lightrays
3. Measurements via returning lighttrays
worldline of observer in free fall
3. Measurements via returning lightrays

worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D
3. Measurements via returning light rays

worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D
3. Measurements via returning light rays

Worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D

Parametrisation

\[h(\lambda)g = (v_\lambda, a_\lambda)g, \quad \lambda \in \pi_1(M) \]

\[g(t) = t \cdot x + x_0 \quad x^2 = -1, \quad x_0 \in D \]
3. Measurements via returning light rays

Worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D

Parametrisation

$h(\lambda)g = (v_\lambda, a_\lambda)g, \lambda \in \pi_1(M)$

$g(t) = t \cdot x + x_0 \quad x^2 = -1, x_0 \in D$

Rapidity

$cosh \rho_\lambda = x \cdot v_\lambda x$
3. Measurements via returning lightrays

worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D

Parametrisation

$h(\lambda)g = (v_\lambda, a_\lambda)g$, $\lambda \in \pi_1(M)$

$g(t) = t \cdot x + x_0$, $x^2 = -1$, $x_0 \in D$

Rapidity

$cosh \rho_\lambda = x \cdot v_\lambda x$
3. Measurements via returning light rays

worldline of observer in free fall

\(\pi_1(M) \)-equiv. class of timelike, future oriented geodesics in \(D \)

parametrisation

\[
g(t) = t \cdot x + x_0 \quad x^2 = -1, \quad x_0 \in D
\]

rapidity

\[
cosh \rho_\lambda = x \cdot v_\lambda x
\]

3 parameters for relative initial position
3. Measurements via returning lightrays

worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D

parametrisation
$h(\lambda)g = (v_\lambda, a_\lambda)g$, $\lambda \in \pi_1(M)$

$g(t) = t \cdot x + x_0$
$x^2 = -1, x_0 \in D$

rapidity
$cosh \rho_\lambda = x \cdot v_\lambda x$

3 parameters for relative initial position

$h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x$
3. Measurements via returning light rays

Worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in \mathcal{D}

Parametrisation

$h(\lambda)g = (v_\lambda, a_\lambda)g, \ \lambda \in \pi_1(M)$

$g(t) = t \cdot x + x_0, \ x^2 = -1, x_0 \in \mathcal{D}$

Rapidity

$cosh \rho_\lambda = x \cdot v_\lambda x$

3 parameters for relative initial position

$h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x$
3. Measurements via returning lightrays

worldline of observer in free fall

\(\pi_1(M) \)-equiv. class of timelike, future oriented geodesics in \(D \)

parametrisation
\[h(\lambda)g = (v_\lambda, a_\lambda)g, \ \lambda \in \pi_1(M) \]

\[g(t) = t \cdot x + x_0 \quad x^2 = -1, \quad x_0 \in D \]

rapidity
\[\cosh \rho_\lambda = x \cdot v_\lambda x \]

3 parameters for relative initial position

\[h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x \]

returning lightray
3. Measurements via returning light rays

worldline of observer in free fall

\(\pi_1(M) \)-equiv. class of timelike, future oriented geodesics in \(D \)

parametrisation

\[
\begin{align*}
 h(\lambda)g &= (v_\lambda, a_\lambda)g, \quad \lambda \in \pi_1(M) \\
g(t) &= t \cdot x + x_0 \\
x^2 &= -1, \quad x_0 \in D
\end{align*}
\]

rapidity

\[
\cosh \rho_\lambda = x \cdot v_\lambda x
\]

3 parameters for relative initial position

\[
\begin{align*}
 h(\lambda)g(0) - g(0) &= \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x
\end{align*}
\]

returning light ray

light ray emitted by observer at time \(t \) that returns at time \(t + \Delta t \)
3. Measurements via returning light rays

worldline of observer in free fall
\(\pi_1(M) \)-equiv. class of timelike, future oriented geodesics in \(D \)

parametrisation
\[
g(t) = t \cdot x + x_0 \quad x^2 = -1, \quad x_0 \in D
\]

rapidity
\[
cosh \rho_\lambda = x \cdot v_\lambda x
\]

3 parameters for relative initial position
\[
h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x
\]

returning light ray

light ray emitted by observer at time \(t \) that returns at time \(t + \Delta t \)
\(\Leftrightarrow \) lightlike geodesic in \(D \) from \(g \) to image \(h(\lambda)g, \ \lambda \in \pi_1(M) \)
3. Measurements via returning lightrays

- Worldline of observer in free fall
 \[\pi_1(M) \text{-equiv. class of timelike, future oriented geodesics in } D \]

- Parametrisation
 \[h(\lambda)g = (v_\lambda, a_\lambda)g, \quad \lambda \in \pi_1(M) \]
 \[g(t) = t \cdot x + x_0, \quad x^2 = -1, \quad x_0 \in D \]

- Rapidity
 \[\cosh \rho_\lambda = x \cdot v_\lambda x \]

3 parameters for relative initial position

\[h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x \]

- Returning lightray
 \[\text{lightray emitted by observer at time } t \text{ that returns at time } t + \Delta t \]
 \[\leftrightarrow \text{ lightlike geodesic in } D \text{ from } g \text{ to image } h(\lambda)g, \quad \lambda \in \pi_1(M) \]
3. Measurements via returning light rays

worldline of observer in free fall

$\pi_1(M)$-equiv. class of timelike, future oriented geodesics in D

parametrisation

$h(\lambda)g = (v_\lambda, a_\lambda)g$, $\lambda \in \pi_1(M)$

$g(t) = t \cdot x + x_0$, $x^2 = -1$, $x_0 \in D$

rapidity

$cosh \rho_\lambda = x \cdot v_\lambda x$

3 parameters for relative initial position

$h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x$

returning light ray

light ray emitted by observer at time t that returns at time $t+\Delta t$

\Leftrightarrow lightlike geodesic in D from g to image $h(\lambda)g$, $\lambda \in \pi_1(M)$

\Leftrightarrow 1:1-correspondence with elements of $\pi_1(M)$
3. Measurements via returning lightrays

worldline of observer in free fall

\[\pi_1(M) \text{-equiv. class of timelike, future oriented geodesics in } D \]

parametrisation

\[h(\lambda)g = (v_\lambda, a_\lambda)g, \; \lambda \in \pi_1(M) \]

\[g(t) = t \cdot x + x_0, \; x^2 = -1, \; x_0 \in D \]

rapidity

\[\cosh \rho_\lambda = x \cdot v_\lambda x \]

3 parameters for relative initial position

\[h(\lambda)g(0) - g(0) = \sigma_\lambda (v_\lambda x - x) + \tau_\lambda v_\lambda x + \nu_\lambda x \wedge v_\lambda x \]

returning lightray

Lightray emitted by observer at time \(t \) that returns at time \(t + \Delta t \)

\[\Rightarrow \text{ lightlike geodesic in } D \text{ from } g \text{ to image } h(\lambda)g, \; \lambda \in \pi_1(M) \]

\[\Rightarrow 1:1\text{-correspondence with elements of } \pi_1(M) \]

condition

\[(h(\lambda)g(t + \Delta t) - g(t))^2 = 0, \; \lambda \in \pi_1(M) \]
Return time

\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma \lambda)(\cosh \rho \lambda - 1) - \tau \lambda + \sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2_\lambda} \]
return time

$$\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

direction of emission
return time

\[
\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}
\]

direction of emission
return time

\[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

direction of emission

\[\hat{\mathbf{p}}_\lambda(t) = \hat{\Pi}_{x\perp}(h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge v_\lambda \mathbf{x}}{|\mathbf{x} \wedge v_\lambda \mathbf{x}|} \]
return time

$$\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma \lambda)(\cosh \rho \lambda - 1) - \tau \lambda + \sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu_{\lambda}^2}$$

direction of emission

$$\hat{p}_\lambda(t) = \hat{\Pi}_{x \perp} (h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x \perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|}$$

$$\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_{\lambda}}{\sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu_{\lambda}^2} + (t + \sigma \lambda) \cosh \rho \lambda} \right)$$
return time

\[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} \]

direction of emission

\[\hat{\mathbf{p}}_\lambda(t) = \hat{\Pi}_{\mathbf{x} \perp}(h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{\mathbf{x} \perp}(v_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge v_\lambda \mathbf{x}}{|\mathbf{x} \wedge v_\lambda \mathbf{x}|} \]

angles between directions of emission

\[\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]
\[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

direction of emission
\[\hat{p}_\lambda(t) = \hat{\Pi}_{\mathbf{x}^\perp}(h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{\mathbf{x}^\perp}(v_\lambda \mathbf{x}) + \sin \phi \left(\frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \right) \]
\[\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

angles between directions of emission
\[\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t) \]
\[
\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}
\]

Direction of emission

\[
\hat{p}_\lambda(t) = \hat{\Pi}_{x_\perp} (h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x_\perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|}
\]

\[
\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2 + (t + \sigma_\lambda) \cosh \rho_\lambda}} \right)
\]

Angles between directions of emission

\[
\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t)
\]

Frequency shift

\(\Rightarrow\) via relativistic Doppler effect
return time

$$\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

direction of emission

$$\hat{p}_\lambda(t) = \hat{\Pi}_{\mathbf{x} \perp} (h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{\mathbf{x} \perp} (v_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge v_\lambda \mathbf{x}}{|\mathbf{x} \wedge v_\lambda \mathbf{x}|}$$

$$\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right)$$

angles between directions of emission

$$\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t)$$

frequency shift \Rightarrow via relativistic Doppler effect

$$\frac{f_r}{f_e} = \frac{\mathbf{x} \cdot (h(\lambda)g(t + \Delta t) - g(t))}{v_\lambda \mathbf{x} \cdot (h(\lambda)g(t + \Delta t) - g(t))}$$
return time

\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

direction of emission

\[\hat{p}_\lambda(t) = \hat{\Pi}_{x\perp} (h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x\perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

angles between directions of emission

\[\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t) \]

frequency shift via relativistic Doppler effect

\[\frac{f_r}{f_e} = \frac{x \cdot (h(\lambda)g(t + \Delta t) - g(t))}{v_\lambda x \cdot (h(\lambda)g(t + \Delta t) - g(t))} \]

\[\frac{f_r}{f_e(t, x, x_0, h(\lambda))} = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]
return time

\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

direction of emission

\[\hat{p}_\lambda(t) = \hat{\Pi}_{x\perp}(h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

angles between directions of emission

\[\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t) \]

frequency shift \: \xrightarrow{\text{via relativistic Doppler effect}} \: \text{redshift}

\[f_r/f_e = \frac{x \cdot (h(\lambda)g(t + \Delta t) - g(t))}{v_\lambda x \cdot (h(\lambda)g(t + \Delta t) - g(t))} \]

\[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda(t + \sigma_\lambda)} \]
return time

\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

direction of emission

\[\hat{p}_\lambda(t) = \hat{\Pi}_{x \perp} (h(\lambda)g(t + \Delta t) - g(t)) = \cos \phi \hat{\Pi}_{x \perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

angles between directions of emission

\[\cos \Phi_{\lambda_1, \lambda_2} = \hat{p}_{\lambda_1}(t) \cdot \hat{p}_{\lambda_1}(t) \]

frequency shift \(\rightarrow \) via relativistic Doppler effect

\[f_r / f_e = \frac{x \cdot (h(\lambda)g(t + \Delta t) - g(t))}{v_\lambda x \cdot (h(\lambda)g(t + \Delta t) - g(t))} \]

\[f_r / f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

\(\rightarrow \) functions of: emission time \(\Delta t \), observer \(x, x_0 \), holonomies \(h(\lambda) \)
Measurements - physical interpretation
Measurements - physical interpretation

Return time
\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda) (\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

Frequency shift
\[f_r / f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

Direction of emission
\[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda} \frac{1}{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]
Measurements - physical interpretation

Return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma \lambda)(\cosh \rho \lambda - 1) - \tau \lambda + \sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} \]

Frequency shift \[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma \lambda)^2 + \nu^2}}{\cosh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} + \sinh \rho \lambda (t + \sigma \lambda)} \]

Direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} + (t + \sigma \lambda) \cosh \rho \lambda} \right) \]

conformally static spacetimes and “big bang” observers
Measurements - physical interpretation

Return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \)

Frequency shift \(f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda(t + \sigma_\lambda)} \)

Direction of emission \(\hat{p}(t, x, x_0, h(\lambda)) = \cos \phi \hat{\Pi}_{x_\perp}(v_\lambda x) + \sin \phi \, \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \)

\(\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \)

Conformally static spacetimes and “big bang” observers
Measurements - physical interpretation

Return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

Frequency shift \[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

Direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x^\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

Conformally static spacetimes and “big bang” observers
\[h(\lambda) = (v_\lambda, 0) \quad \forall \lambda \in \pi_1(M) \quad \sigma_\lambda = \tau_\lambda = \nu_\lambda = 0 \quad \forall \lambda \in \pi_1(M) \]
Measurements - physical interpretation

Return time
\[
\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}
\]

Frequency shift
\[
f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)}
\]

Direction of emission
\[
\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x^\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|}
\]
\[
\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right)
\]

Conformally static spacetimes and “big bang” observers
\[
h(\lambda) = (v_\lambda, 0) \quad \forall \lambda \in \pi_1(M) \quad \sigma_\lambda = \tau_\lambda = \nu_\lambda = 0 \quad \forall \lambda \in \pi_1(M)
\]

Return time linear in t
\[
\Delta t = t(\exp(\rho_\lambda) - 1)
\]
Measurements - physical interpretation

return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_{\lambda}^2} \)

frequency shift \(f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_{\lambda}^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_{\lambda}^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \)

direction of emission \(\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x \perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \)

\(\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_{\lambda}^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \)

conformally static spacetimes and “big bang” observers

\(h(\lambda) = (v_\lambda, 0) \quad \forall \lambda \in \pi_1(M) \quad \sigma_\lambda = \tau_\lambda = \nu_\lambda = 0 \quad \forall \lambda \in \pi_1(M) \)

return time linear in \(t \)

\(\Delta t = t(\exp(\rho_\lambda) - 1) \)

directions constant

\(\hat{p}_\lambda = \hat{\Pi}_{x \perp} (v_\lambda x) \)
Measurements - physical interpretation

Return Time
\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

Frequency Shift
\[\frac{f_r}{f_e}(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

Direction of Emission
\[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

Conformally Static Spacetimes and “Big Bang” Observers
\[h(\lambda) = (v_\lambda, 0) \quad \forall \lambda \in \pi_1(M) \quad \sigma_\lambda = \tau_\lambda = \nu_\lambda = 0 \quad \forall \lambda \in \pi_1(M) \]

Return Time linear in \(t \)
\[\Delta t = t(\exp(\rho_\lambda) - 1) \]

Directions constant
\[\hat{p}_\lambda = \hat{\Pi}_{x\perp}(v_\lambda x) \]

Frequency Shift constant
\[\frac{f_r}{f_e} = \exp(-\rho_\lambda) \]
general spacetimes and observers
general spacetimes and observers

return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift \[\frac{f_r}{f_e}(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \, \hat{\Pi}_{x_\perp} (v_\lambda x) + \sin \phi \, \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]
general spacetimes and observers

return time \[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift \[f_{r}/f_{e}(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda(t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x \perp}(v_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge v_\lambda \mathbf{x}}{|\mathbf{x} \wedge v_\lambda \mathbf{x}|} \]

\[\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \rightarrow \infty \)
general spacetimes and observers

Return time
\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma \lambda) (\cosh \rho \lambda - 1) - \tau \lambda + \sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2_{\lambda}} \]

Frequency shift
\[\frac{f_r}{f_e}(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma \lambda)^2 + \nu^2_{\lambda}}}{\cosh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2_{\lambda}} + \sinh \rho \lambda (t + \sigma \lambda)} \]

Direction of emission
\[\hat{p}_\lambda(t) = \cos \phi \, \hat{\Pi}_{x \perp} (v_{\lambda x}) + \sin \phi \, \frac{x \wedge v_{\lambda x}}{|x \wedge v_{\lambda x}|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_{\lambda}}{\sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2_{\lambda}} + (t + \sigma \lambda) \cosh \rho \lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_{\lambda} \)
general spacetimes and observers

return time \[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} \]

frequency shift \[\frac{f_r}{f_e}(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + \sinh \rho_\lambda(t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{\mathbf{x} \perp} (v_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge v_\lambda \mathbf{x}}{|\mathbf{x} \wedge v_\lambda \mathbf{x}|} \]
\[\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)
general spacetimes and observers

return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \)

frequency shift \(f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \)

direction of emission \(\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x^\perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \)

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)
general spacetimes and observers

return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \)

frequency shift \(f_r / f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \)

direction of emission \(\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \)

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

- geodesic not deflected
general spacetimes and observers

return time
\[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift
\[\frac{f_r}{f_e}(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission
\[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

-\[\nu_v = 0 \]
- geodesic not deflected
- length increases by constant
general spacetimes and observers

return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} \]

frequency shift \[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]

\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

\[\nu_\nu = 0 \]

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
general spacetimes and observers

return time
\[\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift
\[\frac{f_r}{f_e}(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission
\[\mathbf{p}_\lambda(t) = \cos \phi \hat{\Pi}_{\mathbf{x} \perp}(\nu_\lambda \mathbf{x}) + \sin \phi \frac{\mathbf{x} \wedge \nu_\lambda \mathbf{x}}{|\mathbf{x} \wedge \nu_\lambda \mathbf{x}|} \]
\[\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

\[\nu_v = 0 \]

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant
general spacetimes and observers

return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} \]

frequency shift \[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \widehat{\Pi}_{x\perp} (\nu_\lambda x) + \sin \phi \frac{x \wedge \nu_\lambda x}{|x \wedge \nu_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu^2_\lambda} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

\[\nu_v = 0 \]
\[\nu_v \neq 0 \]

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant
general spacetimes and observers

Return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma \lambda)(\cosh \rho \lambda - 1) - \tau \lambda + \sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} \)

Frequency shift \(f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma \lambda)^2 + \nu^2}}{\cosh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} + \sinh \rho \lambda (t + \sigma \lambda)} \)

Direction of emission \(\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp}(\nu \lambda x) + \sin \phi \frac{x \wedge \nu \lambda x}{|x \wedge \nu \lambda x|} \)

\[
\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu \lambda}{\sinh \rho \lambda \sqrt{(t + \sigma \lambda)^2 + \nu^2} + (t + \sigma \lambda) \cosh \rho \lambda} \right)
\]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu \lambda \)
- reflects properties of evolving spacetimes (via grafting)

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant
general spacetimes and observers

return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift \[\frac{f_r}{f_e}(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x \perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

- \(\nu_v = 0 \)
- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant

- \(\nu_v \neq 0 \)
- geodesic deflected
- length increase varies with \(t \)
general spacetimes and observers

return time \(\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \left(\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}\right) \)

frequency shift \(f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \)

direction of emission \(\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x\perp}(v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \)

\(\phi(t, x, x_0, h(\lambda)) = \arctan\left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda}\right) \)

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

\[\begin{align*}
\nu_v &= 0 \\
\nu_v &\neq 0
\end{align*} \]

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant
- geodesic deflected
- length increase varies with \(t \)
- \(\Delta t \) nonlinear in \(t \)
general spacetimes and observers

return time \[\Delta t(t, x, x_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} \]

frequency shift \[f_r/f_e(t, x, x_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)} \]

direction of emission \[\hat{p}_\lambda(t) = \cos \phi \hat{\Pi}_{x \perp} (v_\lambda x) + \sin \phi \frac{x \wedge v_\lambda x}{|x \wedge v_\lambda x|} \]
\[\phi(t, x, x_0, h(\lambda)) = \arctan \left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda} \right) \]

- values for static spacetimes approached in limit \(t \to \infty \)
- non-linearity / time dependence due to parameter \(\nu_\lambda \)
- reflects properties of evolving spacetimes (via grafting)

- geodesic not deflected
- length increases by constant
- \(\Delta t \) linear in \(t \)
- frequency shift constant

- geodesic deflected
- length increase varies with \(t \)
- \(\Delta t \) nonlinear in \(t \)
- frequency shift not constant
4. Measurements of observers vs Dirac observables
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

\[\text{phase space} \quad \text{Hom}_0(\pi_1(M), P_3)/P_3 \]
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

measurements by observer
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

measurements by observer \(\bowtie \) functions of: emission time \(t \)

observer \(x \in \mathbb{H}^2, x_0 \in D \) holonomies \(h(\lambda) \)
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

measurements by observer \(\ni \) functions of: emission time \(t \)
observer \(x \in \mathbb{H}^2, x_0 \in D \) holonomies \(h(\lambda) \)

\(\ni \) not functions on physical phase space, not Dirac observables
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

measurements by observer \(\Rightarrow \) functions of: emission time \(t \)
observer \(x \in \mathbb{H}^2, x_0 \in D \) holonomies \(h(\lambda) \)

\(\Rightarrow \) not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

\[\text{phase space } \text{Hom}_0(\pi_1(M), P_3)/P_3 \]

measurements by observer \(\Rightarrow \) functions of: \text{emission time} \(t \)

observer \(x \in \mathbb{H}^2, x_0 \in D \) \text{holonomies} \(h(\lambda) \)

\(\Rightarrow \) not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer

\(\Rightarrow \) specify observer with respect to spacetime geometry
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

measurements by observer \triangleright functions of: emission time t

observer $x \in \mathbb{H}^2$, $x_0 \in D$ holonomies $h(\lambda)$

\triangleright not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer

\triangleright specify observer with respect to spacetime geometry

"comoving" observer for $\lambda \in \pi_1(M)$
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

measurements by observer \Rightarrow functions of: emission time t

observer $x \in \mathbb{H}^2$, $x_0 \in D$ **holonomies** $h(\lambda)$

\Rightarrow not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer

\Rightarrow specify observer with respect to spacetime geometry

„comoving“ observer for $\lambda \in \pi_1(M)$

- velocity vector in plane stabilised by $v_\lambda \in SO(2, 1)$
 $x \cdot n_\lambda = 0 \quad v_\lambda = \exp(n^a_\lambda J_a)$
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

measurements by observer \(\to \) functions of: emission time \(t \)

observer \(x \in \mathbb{H}^2, x_0 \in D \) holonomies \(h(\lambda) \)

\(\to \) not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer

\(\to \) specify observer with respect to spacetime geometry

“comoving“ observer for \(\lambda \in \pi_1(M) \)

- velocity vector in plane stabilised by \(v_\lambda \in SO(2, 1) \)
 \(x \cdot n_\lambda = 0 \quad v_\lambda = \exp(n_\lambda^a J_a) \)
4. Measurements of observers vs Dirac observables

Measurements by observers vs phase space

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

measurements by observer \rightsquigarrow functions of: emission time t

observer $x \in \mathbb{H}^2$, $x_0 \in D$ holonomies $h(\lambda)$

\rightsquigarrow not functions on physical phase space, not Dirac observables

Dirac observables via specification of observer

\rightsquigarrow specify observer with respect to spacetime geometry

"comoving" observer for $\lambda \in \pi_1(M)$

• velocity vector in plane stabilised by $v_\lambda \in SO(2, 1)$

 $x \cdot n_\lambda = 0 \quad v_\lambda = \exp(n_\lambda^a J_a)$

• relative initial position vector orthogonal to plane stabilised by $v_\lambda \in SO(2, 1)$

 $n_\lambda \wedge (h(\lambda)g(0) - g(0)) = 0$
Measurements and Wilson loops
Measurements and Wilson loops

measurements of comoving observers
Measurements and Wilson loops

measurements of comoving observers

- **return time** \[\Delta t(t, h(\lambda)) = (\cosh m_\lambda - 1)t + \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2} \]

- **direction of emission** \[\hat{p}_\lambda(t) = \cos \phi(t) n_\lambda \wedge x + \sin \phi(t) n_\lambda \]
 \[\phi(t, h(\lambda)) = \arctan \left(\frac{s}{\sinh m_\lambda \cosh m_\lambda t + \sinh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2}} \right) \]

- **redshift** \[\frac{f_r}{f_e}(t, h(\lambda)) = \frac{\sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2}}{\cosh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2 + t \sinh^2 m_\lambda}} \]
Measurements and Wilson loops

measurements of comoving observers

• return time \(\Delta t(t, h(\lambda)) = (\cosh m_\lambda - 1)t + \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2} \)

• direction of emission \(\hat{p}_\lambda(t) = \cos \phi(t) n_\lambda \wedge x + \sin \phi(t) n_\lambda \)
 \(\phi(t, h(\lambda)) = \arctan \left(\frac{s}{\sinh m_\lambda \cosh m_\lambda t + \sinh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2}} \right) \)

• redshift \(f_r/f_e(t, h(\lambda)) = \frac{\sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2}}{\cosh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s_\lambda^2} + t \sinh^2 m_\lambda} \)

⇒ given by the two fundamental Wilson loop observables

\(h(\lambda) = (\exp(n_\lambda^a J_a), a_\lambda) \)

mass \(m : \lambda \mapsto m_\lambda = |n_\lambda| \)

spin \(s : \lambda \mapsto s_\lambda = \hat{n}_\lambda \cdot a_\lambda \)
Measurements and Wilson loops

measurements of comoving observers

• return time \(\Delta t(t, h(\lambda)) = (\cosh m_\lambda - 1)t + \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda} \)

• direction of emission \(\hat{p}_\lambda(t) = \cos \phi(t)n_\lambda \wedge x + \sin \phi(t)n_\lambda \)

\[
\phi(t, h(\lambda)) = \arctan \left(\frac{s}{\sinh m_\lambda \cosh m_\lambda t + \sinh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda}} \right)
\]

• redshift

\[
\frac{f_r}{f_e}(t, h(\lambda)) = \frac{\sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda}}{\cosh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda + t \sinh^2 m_\lambda}}
\]

given by the two fundamental Wilson loop observables

\[
h(\lambda) = (\exp(n^a_\lambda J_a), a_\lambda)
\]

mass \(m : \lambda \mapsto m_\lambda = |n_\lambda| \)

spin \(s : \lambda \mapsto s_\lambda = \hat{n}_\lambda \cdot a_\lambda \)

functions of emission time \(t \) and physical phase space
Measurements and Wilson loops

measurements of comoving observers

- return time \(\Delta t(t, h(\lambda)) = (\cosh m_\lambda - 1)t + \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda} \)

- direction of emission \(\hat{p}_\lambda(t) = \cos \phi(t)\mathbf{n}_\lambda \wedge \mathbf{x} + \sin \phi(t)\mathbf{n}_\lambda \)

\(\phi(t, h(\lambda)) = \arctan \left(\frac{s}{\sinh m_\lambda \cosh m_\lambda t + \sinh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda}} \right) \)

- redshift \(\frac{f_r}{f_e}(t, h(\lambda)) = \frac{\sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda}}{\cosh m_\lambda \sqrt{\sinh^2 m_\lambda t^2 + s^2_\lambda} + t \sinh^2 m_\lambda} \)

\(\Rightarrow \) given by the two fundamental Wilson loop observables

\(h(\lambda) = (\exp(n_\lambda^a J_a), a_\lambda) \)

mass \(m : \lambda \mapsto m_\lambda = |\mathbf{n}_\lambda| \)

spin \(s : \lambda \mapsto s_\lambda = \hat{\mathbf{n}}_\lambda \cdot a_\lambda \)

\(\Rightarrow \) functions of emission time \(t \) and physical phase space

\(\Rightarrow \) Wilson loops characterise measurements of specific observers
Role of time
Role of time

time in general relativity
Role of time

time in general relativity

- Hamiltonian is constraint \Rightarrow no time evolution on phase space
Role of time

time in general relativity

• Hamiltonian is constraint \Rightarrow no time evolution on phase space
• physical (Dirac) observables time-independent
Role of time

time in general relativity

• Hamiltonian is constraint \Rightarrow no time evolution on phase space
• physical (Dirac) observables time-independent
• but: measurements by observers generally involve time
Role of time

time in general relativity

- Hamiltonian is constraint ⇨ no time evolution on phase space
- physical (Dirac) observables time-independent
- but: measurements by observers generally involve time measurements (return time, angles, red shift)
Role of time

time in general relativity

• Hamiltonian is constraint \Rightarrow no time evolution on phase space
• physical (Dirac) observables time-independent
• but: measurements by observers generally involve time

measurements (return time, angles, red shift)

• measurements depend on physical state and on eigentime of observer at emission of light ray
Role of time

time in general relativity

• Hamiltonian is constraint \Rightarrow no time evolution on phase space
• physical (Dirac) observables time-independent
• but: measurements by observers generally involve time

measurements (return time, angles, red shift)

• measurements depend on physical state and on eigentime of observer at emission of light ray
• eigentime of observer not function on physical phase space but external parameter
Role of time

time in general relativity
• Hamiltonian is constraint \Rightarrow no time evolution on phase space
• physical (Dirac) observables time-independent
• but: measurements by observers generally involve time

measurements (return time, angles, red shift)
• measurements depend on physical state and on eigentime of observer at emission of lightray
• eigentime of observer not function on physical phase space but external parameter
• time measurements as functions on the physical phase space: time elapsed between two physical events
Role of time

time in general relativity
- Hamiltonian is constraint \Rightarrow no time evolution on phase space
- physical (Dirac) observables time-independent
- but: measurements by observers generally involve time

measurements (return time, angles, red shift)
- measurements depend on physical state and on eigentime of observer at emission of lightray
- eigentime of observer **not** function on physical phase space but external parameter
- time measurements as functions on the physical phase space: time elapsed between two physical events

example: eigentime elapsed between two measurements of return time that yield values $\Delta t(v) = c_1, \Delta t(v) = c_2$
Role of time

time in general relativity

- Hamiltonian is constraint \Rightarrow no time evolution on phase space
- physical (Dirac) observables time-independent
- but: measurements by observers generally involve time

measurements (return time, angles, red shift)

- measurements depend on physical state and on eigentime of observer at emission of lightray
- eigentime of observer not function on physical phase space but external parameter
- time measurements as functions on the physical phase space: time elapsed between two physical events

example: eigentime elapsed between two measurements of return time that yield values $\Delta t(v) = c_1, \Delta t(v) = c_2$

question: which time to consider in quantum theory?
5. Reconstructing spacetime geometry
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

\(\Rightarrow \) determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \)

for a set of generators \(\{\lambda_i\}_{i=1,...,k} \) of \(\pi_1(M) \) (up to conjugation)
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

Phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

- determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \) for a set of generators \(\{\lambda_i\}_{i=1,\ldots,k} \) of \(\pi_1(M) \) (up to conjugation)

Question:
Can this be done via measurements by an observer
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

\(\Rightarrow \) determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \)
for a set of generators \(\{\lambda_i\}_{i=1,...,k} \) of \(\pi_1(M) \) (up to conjugation)

Question:
Can this be done via measurements by an observer
- ignorant of his own state of motion?
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

\(\Rightarrow \) determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \)

for a set of generators \(\{\lambda_i\}_{i=1,\ldots,k} \) of \(\pi_1(M) \) (up to conjugation)

Question:
Can this be done via measurements by an observer
 - ignorant of his own state of motion?
 - in a finite amount of eigentime?
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

Phase space: $\text{Hom}_0(\pi_1(M), P_3)/P_3$

Determining physical state = determining holonomies $h(\lambda_i) \in P_3$ for a set of generators $\{\lambda_i\}_{i=1,...,k}$ of $\pi_1(M)$ (up to conjugation).

Question:
Can this be done via measurements by an observer
- ignorant of his own state of motion?
- in a finite amount of eigentime?

Answer: yes
5. Reconstructing spacetime geometry

How to determine physical state from measurements?

Phase space: $\text{Hom}_0(\pi_1(M), P_3)/P_3$

Determining physical state = determining holonomies $h(\lambda_i) \in P_3$

for a set of generators $\{\lambda_i\}_{i=1,\ldots,k}$ of $\pi_1(M)$ (up to conjugation)

Question:

Can this be done via measurements by an observer

- ignorant of his own state of motion?
- in a finite amount of eigentime?

Answer: yes

Example: conformally static spacetime
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

Phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

\(\Rightarrow\) determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \)
for a set of generators \(\{\lambda_i\}_{i=1,\ldots,k} \) of \(\pi_1(M) \) (up to conjugation)

Question:
Can this be done via measurements by an observer

- ignorant of his own state of motion?
- in a finite amount of eigentime? \[\text{Answer: yes}\]

Example: conformally static spacetime

- translational part of holonomies vanishes (up to conjugation)
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

- determining physical state = determining holonomies $h(\lambda_i) \in P_3$

 for a set of generators $\{\lambda_i\}_{i=1,...,k}$ of $\pi_1(M)$ (up to conjugation)

Question:
Can this be done via measurements by an observer

- ignorant of his own state of motion?
- in a finite amount of eigentime?

 Answer: yes

Example: conformally static spacetime

- translational part of holonomies vanishes (up to conjugation)
- for big bang observer: reconstructing holonomies
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

Phase space $\text{Hom}_0(\pi_1(M), P_3)/P_3$

Determining physical state = determining holonomies $h(\lambda_i) \in P_3$
for a set of generators $\{\lambda_i\}_{i=1,\ldots,k}$ of $\pi_1(M)$ (up to conjugation)

Question:
Can this be done via measurements by an observer
 • ignorant of his own state of motion?
 • in a finite amount of eigentime?

Answer: yes

Example: conformally static spacetime
 • translational part of holonomies vanishes (up to conjugation)
 • for big bang observer: reconstructing holonomies
 = reconstructing a set of generators of Γ from measurements
5. Reconstructing spacetime geometry

Qu: How to determine physical state from measurements?

phase space \(\text{Hom}_0(\pi_1(M), P_3)/P_3 \)

- determining physical state = determining holonomies \(h(\lambda_i) \in P_3 \)
 for a set of generators \(\{\lambda_i\}_{i=1,...,k} \) of \(\pi_1(M) \) (up to conjugation)

Question:
Can this be done via measurements by an observer

- ignorant of his own state of motion?
- in a finite amount of eigentime?

Answer: yes

Example: conformally static spacetime

- translational part of holonomies vanishes (up to conjugation)
- for big bang observer: reconstructing holonomies
 = reconstructing a set of generators of \(\Gamma \) from measurements
 = reconstructing Dirichlet region of \(\Gamma \) from measurements
Dirichlet region
Dirichlet region

\[R_D(\Gamma, \mathbf{x}) \quad = \quad \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \quad \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(\mathbf{x}) \quad D_v(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \} \]
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 \mid d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(x) \quad D_v(x) = \{ y \in \mathbb{H}^2 \mid d(y, x) \leq d(y, vx) \} \]
Dirichlet region

\[R_D(\Gamma, \mathbf{x}) = \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(\mathbf{x}) \quad D_v(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \} \]

- geodesic arc 2k-gon (k\geq2g)
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(x) \quad D_v(x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \} \]

- geodesic arc 2k-gon (k ≥ 2g)
- sides identified pairwise by set of generators of \(\Gamma \)
Dirichlet region

\[R_D(\Gamma, \mathbf{x}) = \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(\mathbf{x}) \quad D_v(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{H}^2 \mid d(\mathbf{y}, \mathbf{x}) \leq d(\mathbf{y}, v\mathbf{x}) \} \]

- geodesic arc 2k-gon (k≥2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} = \bigcap_{v \in \Gamma} D_v(x) \]

- geodesic arc 2k-gon (k\geq2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements
- observer emits light rays in all directions at time t
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(x) \quad D_v(x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \} \]

- geodesic arc 2k-gon (k\geq2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements

- observer emits light rays in all directions at time \(t \)
- light rays return to him one by one
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(x) \quad D_v(x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \} \]

- geodesic arc 2k-gon (k \geq 2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements

- observer emits light rays in all directions at time \(t \)
- light rays return to him one by one
- observer measures for each returning light ray
Dirichlet region

\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 \mid d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} \]

\[= \bigcap_{v \in \Gamma} D_v(x) \]

\[D_v(x) = \{ y \in \mathbb{H}^2 \mid d(y, x) \leq d(y, vx) \} \]

- geodesic arc 2k-gon (k≥2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements

- observer emits light rays in all directions at time \(t \)
- light rays return to him one by one
- observer measures for each returning light ray

 • return time \(\Delta t = t \cdot (\exp(\rho_v) - 1) \) \(\Rightarrow \) distance \(\rho_v = d(x, vx) \)
Dirichlet region
\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, v x) \ \forall v \in \Gamma \} \]
\[= \bigcap_{v \in \Gamma} D_v(x) \]
- geodesic arc 2k-gon (k \geq 2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements
- observer emits light rays in all directions at time \(t \)
- light rays return to him one by one
- observer measures for each returning lightray
 - return time \(\Delta t = t \cdot (\exp(\rho_v) - 1) \Rightarrow \text{distance} \ \rho_v = d(x, v x) \)
 - direction
Dirichlet region
\[R_D(\Gamma, x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \ \forall v \in \Gamma \} \]
\[= \bigcap_{v \in \Gamma} D_v(x) \quad D_v(x) = \{ y \in \mathbb{H}^2 | d(y, x) \leq d(y, vx) \} \]
- geodesic arc 2k-gon (k \geq 2g)
- sides identified pairwise by set of generators of \(\Gamma \)

Measurements
- observer emits light rays in all directions at time \(t \)
- light rays return to him one by one
- observer measures for each returning lightray
 - return time \(\Delta t = t \cdot (\exp(\rho_v) - 1) \) \(\Rightarrow \) distance \(\rho_v = d(x, vx) \)
 - direction
 \(\Rightarrow \) for each returning lightray associated with \(v \in \Gamma \):
 location of image \(vx \in \mathbb{H}^2 \)
Reconstructing the Dirichlet region from measurements
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \(\mathbf{x} \) to origin on disc
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 • observer draws image $\mathbf{v}\mathbf{x}$
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 - observer draws image $\mathbf{v}x$
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc

- for each returning light ray:
 - observer draws image $v\mathbf{x}$
 - observer constructs perpendicular bisector
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc

- for each returning lightray:

 - observer draws image $v\mathbf{x}$

 - observer constructs perpendicular bisector

- after a finite number of returning lightrays:
 geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays:
 geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 • observer draws image $v\mathbf{x}$
 • observer constructs perpendicular bisector
- after a finite number of returning light rays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning light rays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc

- for each returning light ray:
 - observer draws image $v\mathbf{x}$
 - observer constructs perpendicular bisector

- after a finite number of returning light rays:
 geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 • observer draws image $\mathbf{v}\mathbf{x}$
 • observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 - observer draws image $v\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning light rays: geodesic arc polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:

 • observer draws image $\mathbf{v}\mathbf{x}$
 • observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
- consider maximal distance

$$r = \max \{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\}$$
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning light ray:
 - observer draws image $\mathbf{v x}$
 - observer constructs perpendicular bisector
- after a finite number of returning light rays: geodesic arc polygon
- consider maximal distance

$$r = \max \{ d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i \}$$

\(\mathbb{H}^2 \)
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 • observer draws image $\mathbf{v}\mathbf{x}$
 • observer constructs perpendicular bisector
- after a finite number of returning lightrays:
 geodesic arc polygon
- consider maximal distance
 \[r = \max\{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\} \]
- images with $\rho_v = d(\mathbf{v}\mathbf{x}, \mathbf{x}) > 2r$
 cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc

- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector

- after a finite number of returning lightrays:
 geodesic arc polygon

- consider maximal distance

$$r = \max\{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\}$$

- images with $\rho_v = d(\mathbf{v}\mathbf{x}, \mathbf{x}) > 2r$
 cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
- consider maximal distance
 \[r = \max \{ d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners} \, \mathbf{p}_i \} \]
- images with $\rho_v = d(\mathbf{v}\mathbf{x}, \mathbf{x}) > 2r$ cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays:
 geodesic arc polygon
- consider maximal distance
 \[r = \max\{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\} \]
- images with $\rho_v = d(\mathbf{v}\mathbf{x}, \mathbf{x}) > 2r$
cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays:
geodesic arc polygon
- consider maximal distance
 \[r = \max \{ d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i \} \]
- images with $\rho_v = d(\mathbf{v}\mathbf{x}, \mathbf{x}) > 2r$
cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v} \mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays:
 - geodesic arc polygon
- consider maximal distance
 \[r = \max\{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\} \]
- images with $\rho_v = d(\mathbf{v} \mathbf{x}, \mathbf{x}) > 2r$
 cannot affect polygon
- lightrays returning after
 \[\Delta t = t(\exp(2r) - 1) \]
 cannot affect polygon
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $v\mathbf{x}$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays: geodesic arc polygon
- consider maximal distance
 \[r = \max \{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\} \]
- images with $\rho_v = d(v\mathbf{x}, \mathbf{x}) > 2r$
cannot affect polygon
- lightrays returning after
 \[\Delta t = t(\exp(2r) - 1) \]
cannot affect polygon

\[\Rightarrow \text{Dirichlet region and set of generators of } \Gamma \text{ in finite eigentime} \]
Reconstructing the Dirichlet region from measurements

- observer assigns his velocity vector \mathbf{x} to origin on disc
- for each returning lightray:
 - observer draws image $\mathbf{v}x$
 - observer constructs perpendicular bisector
- after a finite number of returning lightrays:
 - geodesic arc polygon
- consider maximal distance
 \[
 r = \max\{d(\mathbf{x}, \mathbf{p}_i) \mid \text{corners } \mathbf{p}_i\}
 \]
- images with $\rho_v = d(\mathbf{v}x, \mathbf{x}) > 2r$
 cannot affect polygon
- lightrays returning after
 \[
 \Delta t = t(\exp(2r) - 1)
 \]
 cannot affect polygon

\triangleright Dirichlet region and set of generators of Γ in finite eigentime
\triangleright full geometry of spacetime in finite eigentime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

Independence of observer’s reference frame

different choice of velocity vector $x \in \mathbb{H}^2$
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector $x \in \mathbb{H}^2$

▷ resulting generators of Γ change by conjugation
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame
different choice of velocity vector \(x \in \mathbb{H}^2 \)
\(\Rightarrow \) resulting generators of \(\Gamma \) change by conjugation

general observer in general spacetime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

- different choice of velocity vector $x \in \mathbb{H}^2$
- \Rightarrow resulting generators of Γ change by conjugation

general observer in general spacetime

- similar
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector $x \in \mathbb{H}^2$

\Rightarrow resulting generators of Γ change by conjugation

general observer in general spacetime

• similar
• more measurements needed to determine parameters
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame
different choice of velocity vector $\mathbf{x} \in \mathbb{H}^2$
\Rightarrow resulting generators of Γ change by conjugation

general observer in general spacetime

• similar
• more measurements needed to determine parameters
• eigentime remains finite
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector \(x \in \mathbb{H}^2 \)

\(\Rightarrow \) resulting generators of \(\Gamma \) change by conjugation

general observer in general spacetime

- similar
- more measurements needed to determine parameters
- eigentime remains finite

observer also ignorant of eigentime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector \(x \in \mathbb{H}^2 \)

\(\Rightarrow \) resulting generators of \(\Gamma \) change by conjugation

general observer in general spacetime

• similar
• more measurements needed to determine parameters
• eigentime remains finite

observer also ignorant of eigentime

• additional measurements needed to fix eigentime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame
- different choice of velocity vector $x \in \mathbb{H}^2$
- resulting generators of Γ change by conjugation

general observer in general spacetime
- similar
- more measurements needed to determine parameters
- eigentime remains finite

observer also ignorant of eigentime
- additional measurements needed to fix eigentime
- eigentime remains finite
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector $x \in H^2$

▷ resulting generators of Γ change by conjugation

general observer in general spacetime

• similar
• more measurements needed to determine parameters
• eigentime remains finite

observer also ignorant of eigentime

• additional measurements needed to fix eigentime
• eigentime remains finite

▷ for general spacetime and general observer:
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame

different choice of velocity vector $x \in \mathbb{H}^2$

▷ resulting generators of Γ change by conjugation

general observer in general spacetime

- similar
- more measurements needed to determine parameters
- eigentime remains finite

observer also ignorant of eigentime

- additional measurements needed to fix eigentime
- eigentime remains finite

▷ for general spacetime and general observer:

- reconstruction of holonomies in finite eigentime
Reconstructing the Dirichlet region from measurements: general ignorant observer in general spacetime

independence of observer’s reference frame
- different choice of velocity vector $x \in \mathbb{H}^2$
- resulting generators of Γ change by conjugation

general observer in general spacetime
- similar
- more measurements needed to determine parameters
- eigentime remains finite

observer also ignorant of eigentime
- additional measurements needed to fix eigentime
- eigentime remains finite

▷ for general spacetime and general observer:
- reconstruction of holonomies in finite eigentime
- full reconstruction of spacetime geometry in finite eigentime
5. Outlook and Conclusions
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda=0$

“topological lensing” via returning light rays
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$

“topological lensing” via returning light rays

- realistic quantities measured by observer:
 - return time, angles, frequency shift
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$

"topological lensing" via returning lightrays

- realistic quantities measured by observer: return time, angles, frequency shift
- explicit expression in terms of phase space variables (holonomies, Wilson loops)
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$

“topological lensing” via returning lightrays

▶ realistic quantities measured by observer: return time, angles, frequency shift

▶ explicit expression in terms of phase space variables (holonomies, Wilson loops)

▶ geometrical interpretation
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$

“topological lensing” via returning lightrays

- realistic quantities measured by observer: return time, angles, frequency shift
- explicit expression in terms of phase space variables (holonomies, Wilson loops)
- geometrical interpretation
- Wilson loops characterise measurements of specific observers
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian $(2+1)$-gravity, $\Lambda = 0$

“topological lensing” via returning lightrays

▷ realistic quantities measured by observer: return time, angles, frequency shift

▷ explicit expression in terms of phase space variables (holonomies, Wilson loops)

▷ geometrical interpretation

▷ Wilson loops characterise measurements of specific observers

▷ reconstruction of spacetime geometry from measurements
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian (2+1)-gravity, $\Lambda = 0$

“topological lensing” via returning lightrays

✧ realistic quantities measured by observer: return time, angles, frequency shift

✧ explicit expression in terms of phase space variables (holonomies, Wilson loops)

✧ geometrical interpretation

✧ Wilson loops characterise measurements of specific observers

✧ reconstruction of spacetime geometry from measurements

✧ framework for investigating concrete physics questions
“topological lensing” via returning light rays

- realistic quantities measured by observer: return time, angles, frequency shift
- explicit expression in terms of phase space variables (holonomies, Wilson loops)
- geometrical interpretation
- Wilson loops characterise measurements of specific observers
- reconstruction of spacetime geometry from measurements

framework for investigating concrete physics questions

concrete example for discussion of conceptual questions of (quantum) gravity: time, measurements, observables,...
5. Outlook and Conclusions

maximal globally hyperbolic genus $g \geq 2$ vacuum spacetimes in Lorentzian $(2+1)$-gravity, $\Lambda = 0$

“topological lensing” via returning lightrays

✧ realistic quantities measured by observer: return time, angles, frequency shift

✧ explicit expression in terms of phase space variables (holonomies, Wilson loops)

✧ geometrical interpretation

✧ Wilson loops characterise measurements of specific observers

✧ reconstruction of spacetime geometry from measurements

✧ framework for investigating concrete physics questions

✧ concrete example for discussion of conceptual questions of (quantum) gravity: time, measurements, observables,...

✧ application to quantum theory!
<table>
<thead>
<tr>
<th>(2+1)-gravity isometry group</th>
<th>Chern-Simons theory gauge group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ > 0</td>
<td>$G = SU(2) \times SU(2)$</td>
</tr>
<tr>
<td>Λ = 0</td>
<td>$G = PSL(2, \mathbb{R}) \times \mathbb{R}^3$</td>
</tr>
<tr>
<td>Λ < 0</td>
<td>$G = SL(2, \mathbb{C})$</td>
</tr>
</tbody>
</table>

- **Euclidean**
 - $\theta = 1$
 - $G = SU(2) \times SU(2)$ when $\Lambda > 0$
 - $G = PSL(2, \mathbb{R}) \times \mathbb{R}^3$ when $\Lambda = 0$
 - $G = SL(2, \mathbb{C})$ when $\Lambda < 0$

- **Lorentzian**
 - $\theta = -1$
 - $G = SL(2, \mathbb{C})$ when $\Lambda > 0$
 - $G = SU(2) \times \mathbb{R}^3$ when $\Lambda = 0$
 - $G = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ when $\Lambda < 0$
(2+1)-gravity

Isometry group

<table>
<thead>
<tr>
<th></th>
<th>(\Lambda > 0)</th>
<th>(\Lambda = 0)</th>
<th>(\Lambda < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>(G = SU(2) \times SU(2))</td>
<td>(G = PSL(2, \mathbb{R}) \times \mathbb{R}^3)</td>
<td>(G = SL(2, \mathbb{C}))</td>
</tr>
<tr>
<td>(\theta = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorentzian</td>
<td>(G = SL(2, \mathbb{C}))</td>
<td>(G = SU(2) \times \mathbb{R}^3)</td>
<td>(G = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}))</td>
</tr>
<tr>
<td>(\theta = -1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gauge group

Lie algebra

\[
\begin{align*}
[J_a, J_b] &= \epsilon_{ab}^\ c J_c \\
[J_a, P_b] &= \epsilon_{ab}^\ c P_c \\
[P_a, P_b] &= \theta \Lambda \epsilon_{ab}^\ c J_c
\end{align*}
\]
(2+1)-gravity

<table>
<thead>
<tr>
<th></th>
<th>(\Lambda > 0)</th>
<th>(\Lambda = 0)</th>
<th>(\Lambda < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>(G = SU(2) \times SU(2))</td>
<td>(G = PSL(2, \mathbb{R}) \times \mathbb{R}^3)</td>
<td>(G = SL(2, \mathbb{C}))</td>
</tr>
<tr>
<td>(\theta = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorentzian</td>
<td>(G = SL(2, \mathbb{C}))</td>
<td>(G = SU(2) \times \mathbb{R}^3)</td>
<td>(G = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}))</td>
</tr>
<tr>
<td>(\theta = -1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lie algebra

\[
\begin{align*}
\{ J_a, J_b \} &= \epsilon_{ab}^\ c J_c \\
\{ J_a, P_b \} &= \epsilon_{ab}^\ c P_c \\
\{ P_a, P_b \} &= \theta \Lambda \epsilon_{ab}^\ c J_c
\end{align*}
\]

Einstein Hilbert action

\[
S[g] = \int_M \sqrt{\det g} (R - 2\Lambda)
\]
(2+1)-gravity isometry group Chern-Simons theory gauge group

<table>
<thead>
<tr>
<th></th>
<th>$\Lambda > 0$</th>
<th>$\Lambda = 0$</th>
<th>$\Lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>$G = SU(2) \times SU(2)$</td>
<td>$G = PSL(2,\mathbb{R}) \times \mathbb{R}^3$</td>
<td>$G = SL(2,\mathbb{C})$</td>
</tr>
<tr>
<td>$\theta = 1$</td>
<td>$G = SU(2) \times SU(2)$</td>
<td>$G = PSL(2,\mathbb{R}) \times \mathbb{R}^3$</td>
<td>$G = SL(2,\mathbb{C})$</td>
</tr>
<tr>
<td>Lorentzian</td>
<td>$G = SL(2,\mathbb{C})$</td>
<td>$G = SU(2) \times \mathbb{R}^3$</td>
<td>$G = PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$</td>
</tr>
<tr>
<td>$\theta = -1$</td>
<td>$G = SL(2,\mathbb{C})$</td>
<td>$G = SU(2) \times \mathbb{R}^3$</td>
<td>$G = PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$</td>
</tr>
</tbody>
</table>

Lie algebra

\[
[J_a, J_b] = \epsilon_{ab}^c J_c \quad [J_a, P_b] = \epsilon_{ab}^c P_c \quad [P_a, P_b] = \theta \Lambda \epsilon_{ab}^c J_c
\]

Einstein Hilbert action

\[
S[g] = \int_M \sqrt{\det g} (R - 2\Lambda)
\]

Chern-Simons action

\[
S[A] = \int_M \langle A \wedge dA + \frac{2}{3} A \wedge A \wedge A \rangle
\]

\[
\langle J_a, P_b \rangle = \eta_{ab}
\]

\[
\langle J_a, J_b \rangle = \langle P_a, P_b \rangle = 0
\]

\[
A = A_\mu dx^\mu
\]
(2+1)-gravity

isometry group

<table>
<thead>
<tr>
<th></th>
<th>$\Lambda > 0$</th>
<th>$\Lambda = 0$</th>
<th>$\Lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>$G = SU(2) \times SU(2)$</td>
<td>$G = PSL(2, \mathbb{R}) \times \mathbb{R}^3$</td>
<td>$G = SL(2, \mathbb{C})$</td>
</tr>
<tr>
<td>Lorentzian</td>
<td>$G = SL(2, \mathbb{C})$</td>
<td>$G = SU(2) \times \mathbb{R}^3$</td>
<td>$G = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$</td>
</tr>
</tbody>
</table>

Lie algebra

$$[J_a, J_b] = \epsilon_{ab}^c J_c \quad [J_a, P_b] = \epsilon_{ab}^c P_c \quad [P_a, P_b] = \theta \Lambda \epsilon_{ab}^c J_c$$

Einstein Hilbert action

$$S[g] = \int_M \sqrt{\det g} (R - 2\Lambda)$$

$$g_{\mu\nu} = \eta^{ab} \langle A_\mu, J_a \rangle \langle A_\nu, J_b \rangle$$

Chern-Simons action

$$S[A] = \int_M \langle A \wedge dA + \frac{2}{3} A \wedge A \wedge A \rangle$$

$$\langle J_a, P_b \rangle = \eta_{ab}$$

$$\langle J_a, J_b \rangle = \langle P_a, P_b \rangle = 0$$

$$A = A_\mu dx^\mu$$
The grafting construction
The grafting construction

Grafting on a genus 2 surface
The grafting construction

Grafting on a genus 2 surface
The grafting construction

Grafting on a genus 2 surface

Grafting in the regular domain
The grafting construction

Grafting on a genus 2 surface

Grafting in the regular domain
The grafting construction

Grafting on a genus 2 surface

Grafting in the regular domain
The grafting construction

Grafting on a genus 2 surface

Grafting in the regular domain
The earthquake
The earthquake

Earthquake on a genus 2 surface
The earthquake

Earthquake on a genus 2 surface
The earthquake

Earthquake on a genus 2 surface

Earthquake in the regular domain
The earthquake

Earthquake on a genus 2 surface

Earthquake in the regular domain
The earthquake

Earthquake on a genus 2 surface

Earthquake in the regular domain