Author:  
All :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: H. Lutz, ... , Hutzl, Huy, Huybrechts, Hwang 
References
10.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions
Arch. Ration. Mech. Anal., 231(3):1309--1400
2019
9.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
On the structure of the singular set for the kinetic Fokker-Planck equations in domains with boundaries
Quart. Appl. Math., 77(1):19--70
2019
8.
Hyung Ju Hwang, Juhi Jang and Juan J. L. Velázquez
The Fokker-Planck equation with absorbing boundary conditions
Arch. Ration. Mech. Anal., 214(1):183--233
2014
7.
Hyung Ju Hwang and Juan J. L. Velázquez
Bistable stochastic biochemical networks: highly specific systems with few chemicals
J. Math. Chem., 51(5):1343--1375
2013
6.
Hyung Ju Hwang and Juan J. L. Velázquez
Bistable stochastic biochemical networks: large chemical networks and systems with many molecules
J. Math. Chem., 51(8):2074--2103
2013
5.
Hyung Ju Hwang, Jaewoo Jung and Juan J. L. Velázquez
On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains
Discrete Contin. Dyn. Syst., 33(2):723--737
2013
4.
Hyung Ju Hwang, Alan Rendall and Juan J. L. Velázquez
Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data
Arch. Ration. Mech. Anal., 200(1):313--360
2011
3.
Hyung Ju Hwang and Juan J. L. Velázquez
Global existence for the Vlasov-Poisson system in bounded domains
Arch. Ration. Mech. Anal., 195(3):763--796
2010
2.
Hyung Ju Hwang and Juan J. L. Velázquez
On global existence for the Vlasov-Poisson system in a half space
J. Differential Equations, 247(6):1915--1948
2009
1.
Hyung Ju Hwang and Juan J. L. Velázquez
On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem
Indiana Univ. Math. J., 58(6):2623--2660
2009
Export as:
BibTeX, XML