Author:  
All :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Kaad, ... , Koehl, Koepke, Koerwien, ... , Köhne 
References
57.
Dominik Adolf, Arthur W. Apter and Peter Koepke
Singularizing successor cardinals by forcing
Proc. Amer. Math. Soc., 146(3):773--783
2018
56.
Dominik Adolf, Arthur W. Apter and Peter Koepke
Singularizing successor cardinals by forcing
Proc. Amer. Math. Soc., 146(2):773--783
2018
55.
Peter Koepke and Andrei S. Morozov
The computational power of infinite time Blum-Shub-Smale machines
Algebra and Logic, 56(1):37--62
2017
54.
Arthur W. Apter, Ioanna M. Dimitriou and Peter Koepke
All uncountable cardinals in the Gitik model are almost Ramsey and carry Rowbottom filters
MLQ Math. Log. Q., 62(3):225--231
2016
53.
Arthur W. Apter, Ioanna M. Dimitriou and Peter Koepke
The first measurable cardinal can be the first uncountable regular cardinal at any successor height
MLQ Math. Log. Q., 60(6):471--486
2014
52.
Peter Koepke
Logic, Methodology and Philosophy of Science - Proceedings of the 14th InternationalCongress
In Pierre Edouard Bour, Gerhard Heinzmann and Wilfriedand Schröder-Heister Hodges, editor,
Chapter Computer-Assisted Formal Mathematics and Mathematical Practice, page 409--426.
Publisher: College Publications,
2014
51.
Peter Koepke
Mathematics and the new technologies part II: computer-assisted formal mathematics and mathematical practice
Logic, methodology and philosophy of science---logic and science facing the new technologies
page 409--426.
Publisher: Coll. Publ., [London],
2014
50.
Peter Koepke, Karen Räsch and Philipp Schlicht
A minimal Prikry-type forcing for singularizing a measurable cardinal
J. Symbolic Logic, 78(1):85--100
2013
49.
Peter Koepke and Julian J. Schlöder
The Gödel completeness theorem for uncountable languages
Formalized Mathematics, 20:199--203
2012
48.
Peter Koepke and Julian J. Schlöder
Transition of consistency and satisfiability under language extensions
Formalized Mathematics, 20:193--197
2012
47.
Moti Gitik and Peter Koepke
Violating the singular cardinals hypothesis without large cardinals
Israel J. Math., 191(2):901--922
2012
46.
Peter Koepke and Benjamin Seyfferth
Towards a theory of infinite time Blum-Shub-Smale machines
How the world computes Volume 7318 of Lecture Notes in Comput. Sci.
page 405--415.
Publisher: Springer, Heidelberg,
2012
Page:  
Previous | 1, 2, 3, 4, 5 | Next
Export as:
BibTeX, XML