Author:  
All :: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Zaal, Zagier, Zagir, Zaglmayr, ... , Zworski 
References
161.
John Lewis and Don Zagier
Cotangent sums, quantum modular forms, and the generalized Riemann hypothesis
Res. Math. Sci., 6(1):Paper No. 4, 24
2019
160.
Michael Griffin, Ken Ono, Larry Rolen and Don Zagier
Jensen polynomials for the Riemann zeta function and other sequences
Proc. Natl. Acad. Sci. USA, 116(23):11103--11110
2019
159.
YoungJu Choie, Yoon Kyung Park and Don Zagier
Periods of modular forms on {Î?_0(N)} and products of Jacobi theta functions
J. Eur. Math. Soc. (JEMS), 21(5):1379--1410
2019
158.
Dawei Chen, Martin Möller and Don Zagier
Quasimodularity and large genus limits of Siegel-Veech constants
J. Amer. Math. Soc., 31(4):1059--1163
2018
157.
Don Zagier
The arithmetic and topology of differential equations
European Congress of Mathematics
page 717--776.
Publisher: Eur. Math. Soc., Zürich,
2018
156.
Alexandru A. Popa and Don Zagier
A combinatorial refinement of the Kronecker-Hurwitz class number relation
Proc. Amer. Math. Soc., 145(3):1003--1008
2017
155.
Boris Dubrovin, Di Yang and Don Zagier
Classical Hurwitz numbers and related combinatorics
Mosc. Math. J., 17(4):601--633
2017
154.
Martin Möller and Don Zagier
Modular embeddings of Teichmüller curves
Compos. Math., 152(11):2269--2349
2016
153.
Don Zagier
Partitions, quasimodular forms, and the Bloch-Okounkov theorem
Ramanujan J., 41(1-3):345--368
2016
152.
Dawei Chen, Martin Moeller and Don Zagier
Quasimodularity and large genus limits of Siegel-Veech constants
eprint arXiv:1606.04065, :107 pages
2016
151.
Don Zagier
Life and work of Friedrich Hirzebruch
Jahresber. Dtsch. Math.-Ver., 117(2):93--132
2015
150.
R. Bruggeman, J. Lewis and D. Zagier
Period functions for Maass wave forms and cohomology
Mem. Amer. Math. Soc., 237(1118):xii+132
2015
ISBN: 978-1-4704-1407-8; 978-1-4704-2503-6
Page:  
Previous | 1, 2, 3, 4, 5, 6, ... , 14 | Next
Export as:
BibTeX, XML