Profile
Profile

Prof. Dr. Martin Rumpf

E-mail: martin.rumpf(at)ins.uni-bonn.de
Phone: +49 228 73 7866
Homepage: http://numod.ins.uni-bonn.de/people/rumpf/rumpf.php
Room: 2.035
Location: Mathematics Center
Institute: Institute for Numerical Simulation
Institute for Applied Mathematics
Research Areas: Research Area B3
Research Area C4
Interdisciplinary Research Unit D3-5

Academic Career

1992

Dr. rer. nat., University of Bonn

1993 - 1996

Postdoc, University of Freiburg

1996 - 2001

Professor (C3), University of Bonn

2001 - 2004

Professor (C4), University of Duisburg-Essen

Since 2004

Professor (C4/W3), University of Bonn

Research Profile

Variational problems and evolution problems arising in computer vision, in geometry processing, and in materials science are the major driving force of my research.

In computer vision I'm interested in the infinite dimensional geometry of shape spaces equipped with a Riemannian metric which is motivated by physical models of viscous dissipation. A central theme is a general variational time discrete Riemannian calculus on different shape spaces, including discrete geodesics, exponential map and parallel transport. Applications are warping of images or shell surfaces, shape extrapolation, and pattern or texture transfer. A comprehensive convergence theory based on \Gamma convergence, finite element and ODE estimates on Hilbert spaces could be developed. I'm also interested in the close links to the theory of optimal transport.

A major goal is to treat textured images and explore inherent multiple scales in image maps. To this end images are considered as pointwise maps into some patch manifold, describing local, high dimensional texture and structure. Furthermore, spline curves and other low dimensional, smooth submanifolds will be particular interest in time dependent data analysis and in geometry animation.

With respect to materials science, I'm particularly interested in two-scale elastic shape optimization and the formation of optimal branching and folding patterns in elastic materials. The minimization of compliance type cost functionals leads to microstructured shapes and branching patterns arising naturally at material interfaces or at boundary incompatibilities.

My focus is on robust a posteriori error control using functional error estimates for BV functionals, duality techniques and relaxation. The aim is an efficient simulation and optimization of the microscopic patterns, and a better understanding of branching-type patterns observed in natural elastic structures, as for example bones and thin sheets. The vision is to carry over the two-scale analysis of elastic bulk material to thin elastic plates and shells.

Research Projects and Activities

DFG Cluster of Excellence “Hausdorff Center for Mathematics”
Deputy coordinator, 2006 – 2012

DFG Cluster of Excellence “Hausdorff Center for Mathematics”
Member of the Board of Directors, since 2006

DFG project “Discrete Riemannian calculus on shape space”
jointly with Karl-Theodor Sturm, in the Collaborative Research Center SFB 1060 “The Mathematics of Emergent Effects”, 2012 - 2020

DFG project “Numerical optimization of shape microstructures”
jointly with Sergio Conti, in the Collaborative Research Center SFB 1060 “The Mathematics of Emergent Effects”, 2012 - 2020

DFG project “Geodesic Paths in Shape Space”
in the research network of the FWF S117 “Geometry + Simulation”, 2012 - 2020

DFG Collaborative Research Center SFB 1060 “The Mathematics of Emergent Effects”
Deputy coordinator, since 2014

Conference “Panorama of Mathematics” (Bonn),
Organizer, 2015

GIF project “A Functional Map Approach to Shape Spaces”
by the German-Israeli Foundation for Scientific Research and Development, jointly with Miri Ben-Chen, 2017 - 2020

Series of Oberwolfach Workshops on “Image and Surface Processing”
Organizer, 2005, 2007, 2011, 2016

Publication List

MathSciNet Publication List (external link)

ArXiv Preprint List (external link)

Editorships

• Computing and Visualization in Science (since 1999)
• SIAM Journal on Imaging Science (since 2007)
• SIAM Journal on Numerical Analysis (since 2015)
• Journal of Mathematical Imaging and Vision (since 2015)

Selected Invited Lectures

2003

Plenary lecture, GAMM annual meeting, Padua / Abano Terme, Italy

2004

Plenary lecture, SIAM Conference on Image Science, Salt Lake City, UT, USA

2005

Plenary lecture, EQUADIFF, Bratislava, Slovakia

2006

Plenary lecture, Curves and Surface, Avignon, France

2008

Lecture course, CIME summer school, Cetraro, Italy

2010

Lecture course, CNA summer school, Pittsburgh, PA, USA

2013

Plenary lecture, SSVM, Graz, Austria

2015

Lecture course, CRC summer school, Barcelona, Spain

2016

Geometry Summit, Berlin

Offers

2002

Chair in Mathematics, University of Zürich, Switzerland

2003

Chair, MATHEON, FU Berlin

2012

Director position of the Weierstrass Institute Berlin combined with a chair at the HU Berlin

Selected PhD students

Olga Wilderotter (2001): “Adaptive Finite-Elemente-Methode für singuläre parabolische Probleme”,
now Professor, HS Karlsruhe

Ulrich Weikard (2002): “Numerische Loesungen der Cahn-Hilliard-Gleichung und der Cahn-Larche-Gleichung”,
now Senior Economist, DekaBank Deutsche Girozentrale

Tobias Preußer (2003): “Anisotropic Geometric Diffusion in Image and Image-Sequence Processing”,
now Professor, Jacobs University Bremen, and Member of Management Board, and Head of Modelling & Simulation, Fraunhofer MEVIS, Bremen

Robert Strzodka (2004): “Hardware Efficient PDE Solvers in Quantized Image Processing”,
now Professor, University of Heidelberg

Benedikt Wirth (2010): “Variational Methods in Shape Space”,
now Associate Professor, University of Münster

Benjamin Berkels (2012): “Joint Methods in imaging based on diffuse image representations”,
now Professor, RWTH Aachen
Download Profile